首页|混合动力汽车转向稳定性多传感器融合控制技术

混合动力汽车转向稳定性多传感器融合控制技术

扫码查看
为了满足汽车行驶稳定性要求,当前依托于单一传感信息进行转向控制,容易忽略很多影响因素,使得控制后汽车转向质心侧偏角依旧较大.因此,混合动力汽车提出转向稳定性多传感器融合控制技术.考虑混合动力汽车转向过程中的动态特性,构建转向动力学模型,并计算出车辆理想横摆角速度.深入分析横摆角速度、滑移率对车辆转向稳定性的影响,得出期望的横摆力矩和滑移率调整力矩.将汽车转向稳定性控制问题看作二次规划问题,结合BP神经网络和常规PID控制器,设计转向稳定性控制算法,利用车辆转向参数的理想值、实际值和偏差值推算出稳定性控制参数.结合融合多传感器实时采集信息,推算出汽车转向姿态误差代入控制结构中,给出优化后的控制参数.实验结果表明:新提出的控制技术应用后,车辆转向的质心侧偏角不超过±0.012 rad/s,满足了混合动力汽车转向行驶要求.
Multi sensor fusion control technology for steering stability of hybrid electric vehicles
In order to meet the requirements of vehicle driving stability,the current steering control relies on a single sensor information,which is prone to ignoring many influencing factors,resulting in a relatively large side slip angle of the steering center of the vehicle after control.Therefore,hybrid electric vehicles have proposed multi sensor fusion control technology for steering stability.Consider the dynamic characteristics of hybrid electric vehicles during the steering process,construct a steering dynamics mod-el,and calculate the ideal yaw rate of the vehicle.Thoroughly analyze the impact of yaw rate and slip rate on vehicle steering stability,and obtain the expected yaw torque and slip rate adjustment torque.Consider the steering stability control problem of automobiles as a quadratic programming problem,com-bine BP neural network and conventional PID controller,design a steering stability control algorithm,and use the ideal,actual,and deviation values of vehicle steering parameters to calculate the stability control parameters.Finally,by integrating real-time information collected from multiple sensors,the steering attitude error of the vehicle is calculated and incorporated into the control structure,and the optimized control parameters are given.The experimental results show that after the application of the newly pro-posed control technology,the center of mass sideslip angle of the vehicle's steering does not exceed plus or minus 0.012 rad/s,meeting the steering driving requirements of hybrid electric vehicles.

hybrid electric vehiclesteering stabilitymultiple sensorsdata fusioncontrol technol-ogytarget identification

马文倩

展开 >

西安航空职业技术学院汽车工程学院,陕西西安 710089

混合动力汽车 转向稳定性 多传感器 数据融合 控制技术 目标识别

西安航空职业技术学院科研重点研究项目

KJTD23-01

2024

工业仪表与自动化装置
陕西鼓风机(集团)有限公司

工业仪表与自动化装置

CSTPCD
影响因子:0.393
ISSN:1000-0682
年,卷(期):2024.(3)