首页|基于RBF神经网络的双馈风电机组最大功率追踪控制方法

基于RBF神经网络的双馈风电机组最大功率追踪控制方法

扫码查看
双馈风电机组通过转子回路进行功率调节控制,当系统在最大功率点附近工作时,回路电流会出现高频振荡的问题.这种振荡会影响系统稳定性,最大功率追踪控制是解决该问题的核心手段.提出基于径向基函数(Radial Basis Function,RBF)神经网络的双馈风电机组最大功率追踪控制方法.分析双馈风电机组基本结构与运行原理,获取风电机组输出功率,并将其输入RBF神经网络输入层中,通过网络隐含层对其展开优化训练,再通过输出层输出最大功率.采用二阶滑模控制策略与比例-积分-微分(Proportion Integration Differentiation,PID)控制器相结合的方法对发电机转矩展开追踪控制,实现对双馈风电机组最大功率的追踪控制,使风电机组保持最大功率运行.实验结果表明,所提方法追踪效果好、追踪精度高、控制精度高.
Research on maximum power tracking control method based on RBF neural network
The doubly fed wind turbine operates through a rotor circuit for power regulation control.When the system operates near the maximum power point,the circuit current will experience high-fre-quency oscillations.This oscillation will affect system stability,and maximum power tracking control is the core means to solve this problem.Propose a maximum power tracking control method for doubly fed wind turbines based on radial basis function(RBF)neural networks.Analyze the basic structure and op-erating principle of doubly fed wind turbines,obtain the output power of the wind turbine,and input it into the input layer of the RBF neural network.Optimize and train it through the hidden layer of the net-work,and then output the maximum power through the output layer.The method of combining second-order sliding mode control strategy with proportional integration differentiation(PID)controller is used to track the torque of the generator,achieving maximum power tracking control for doubly fed wind turbines and maintaining maximum power operation.The experimental results show that the proposed method has good tracking effect,high tracking accuracy,and high control accuracy.

double fed wind turbinestracking controlRBF neural networksecond order sliding mode control strategyPID controller

莫文水

展开 >

广西现代职业技术学院,广西 河池 547000

双馈风电机组 追踪控制 RBF神经网络 二阶滑模控制策略 PID控制器

广西壮族自治区高等学校中青年教师科研基础能力提升项目(2023)

2023KY1471

2024

工业仪表与自动化装置
陕西鼓风机(集团)有限公司

工业仪表与自动化装置

CSTPCD
影响因子:0.393
ISSN:1000-0682
年,卷(期):2024.(3)