首页|基于传感器的工业仪表信号采集与处理技术研究

基于传感器的工业仪表信号采集与处理技术研究

扫码查看
面对工业仪表信号的非平稳性,研究基于传感器的工业仪表信号采集与处理技术,提升工业仪表信号采集与处理能力.通过多传感器采集工业仪表信号,采用改进自适应融合算法融合多传感器采集的工业仪表信号;通过希尔伯特-黄变换方法分析融合后传感器的工业仪表信号,利用经验模态分解工业仪表信号为多个IMF分量,对每个分量实施Hilbert变换后,得出Hilbert边际谱与Hilbert谱,实现工业仪表信号采集与处理.实验结果表明:该方法传感器的灵敏度均高于0.9(v/℃),具有高灵敏度的传感器能够更准确地感知和测量工业仪表物理量的变化.该方法的测量平均误差均低于0.42%,符合工业仪表信号采集和处理的需求,提升工业仪表信号采集与处理能力.
Research on sensor based signal acquisition and processing technology for industrial instruments
In the face of the non-stationary nature of industrial instrument signals,research on sen-sor based industrial instrument signal acquisition and processing technology is needed to enhance the sig-nal acquisition and processing capabilities of industrial instruments.By collecting industrial instrument signals through multiple sensors,an improved adaptive fusion algorithm is used to fuse the industrial in-strument signals collected by multiple sensors.By analyzing the industrial instrument signal of the fused sensor using the Hilbert Huang transform method,the industrial instrument signal is decomposed into multiple IMF components using empirical mode decomposition.After implementing the Hilbert transform on each component,the Hilbert marginal spectrum and Hilbert spectrum are obtained,achieving the ac-quisition and processing of industrial instrument signals.The experimental results show that the sensitivity of the sensors in this method is higher than 0.9(v/℃),and sensors with high sensitivity can more accu-rately perceive and measure changes in physical quantities of industrial instruments.The average meas-urement error of this method is less than 0.42%,which meets the requirements of industrial instrument signal acquisition and processing,and improves the ability of industrial instrument signal acquisition and processing.

sensorindustrial instrumentssignal acquisitionsignal processing technologysignal fusionsignal analysis

张琳

展开 >

广西壮族自治区特种设备检验研究院,广西 南宁 530299

传感器 工业仪表 信号采集 信号处理技术 信号融合 信号分析

广西科技厅科技项目

AD21238035

2024

工业仪表与自动化装置
陕西鼓风机(集团)有限公司

工业仪表与自动化装置

CSTPCD
影响因子:0.393
ISSN:1000-0682
年,卷(期):2024.(3)