首页|基于KPCA融合AdaBoost-IBOA-ELM模型的TE过程故障诊断

基于KPCA融合AdaBoost-IBOA-ELM模型的TE过程故障诊断

Fault diagnosis of TE process based on KPCA fusion AdaBoost-IBOA-ELM model

扫码查看
为了保障化工系统的安全运行和高质量生产,准确判别化工过程的故障就显得尤为重要.针对田纳西-伊斯曼(Tennessee Eastman,TE)过程故障难以区分以及神经网络等方法在故障诊断中分类准确率较低、分类不稳定等问题,提出一种优化改进极限学习机(extreme learning machine,ELM)的TE过程故障诊断模型.首先利用核主成分分析(kernel principal components analysis,KPCA)方法对TE过程数据进行降维和特征提取,然后采用改进蝴蝶算法(improved butterfly optimization algo-rithm,IBOA)优化ELM的权值和阈值,最后利用自适应提升(adaptive boosting,AdaBoost)算法对分类器进行集成,完成故障分类.仿真结果表明,IBOA比其他优化算法具有更好的寻优能力,改进效果显著,AdaBoost-IBOA-ELM模型能够对测试集中的不同故障进行准确分类,最后的分类准确率高达98.5%,通过和其他网络对比,进一步验证了模型的合理性和优越性.
In order to ensure the safe operation and high-quality production of chemical systems,it is particularly important to accurately identify the faults of chemical processes.In order to solve the prob-lems of Tennessee Eastman(TE)process fault indistinguishability,neural network and other methods in fault diagnosis,such as low classification accuracy and unstable classification,a TE process fault diagno-sis model with optimized and improved extreme learning machine(ELM)was proposed.Firstly,the ker-nel principal components analysis(KPCA)method was used to reduce the dimensionality and extract fea-tures of the TE process data,then the improved butterfly optimization algorithm(IBOA)was used to opti-mize the weights and thresholds of the ELM,and finally the adaptive boosting algorithm integrates the classifier to complete the fault classification.The simulation results show that IBOA has better optimiza-tion ability than other optimization algorithms,and the improvement effect is significant,and the Ada-Boost-IBOA-ELM model can accurately classify different faults in the test set,and the final classifica-tion accuracy is as high as 98.5%,which further verifies the rationality and superiority of the model by comparing with other networks.

Tennessee Eastman processkernel principal component analysisimproved butterfly al-gorithmadaptive boosting algorithmfault classification

赵文虎、蔡生宏、王文

展开 >

新疆工业职业技术学院 机电工程系,新疆乌鲁木齐 830022

田纳西-伊斯曼过程 核主成分分析 改进蝴蝶算法 极限学习机 故障分类

新疆乌鲁木齐市工业机器人系统操作员技能大师工作室项目

2024

工业仪表与自动化装置
陕西鼓风机(集团)有限公司

工业仪表与自动化装置

CSTPCD
影响因子:0.393
ISSN:1000-0682
年,卷(期):2024.(4)