首页|基于高速通信的港口设备远程检测与控制技术研究

基于高速通信的港口设备远程检测与控制技术研究

扫码查看
为提高港口设备的远程检测和控制效率,该文基于高速移动通信和深度学习技术,设计了港口设备远程检测与控制平台.该平台采用B/S与C/S相结合的架构形式来提高平台响应速度,以独立的SA专网方式进行5G组网搭建,提高数据传输的安全性.通过融合残差结构与卷积神经网络,建立了具有信息有效传递的IDCNN模型,来提高数据样本数量少的特征提取准确度问题.测试表明,所搭建5G专网的SINR为13.98 dB,RSRP≥-85 dBm,能够满足平台任务需求.与SVM、CNN和决策树模型相比,所提模型的故障识别精度可达86.1%以上,证明了该方案的可行性.
Design of remote detection and control technology for port equipment based on high-speed mobile communication
To improve the efficiency of remote detection and control of port equipment,this paper designs a remote detection and control platform for port equipment based on high-speed mobile commu-nication and deep learning technology.The platform adopts a combination of B/S and C/S architecture to improve the corresponding speed of the platform,and builds a 5G network through an independent SA private network to improve the security of data transmission.By integrating residual structures and convo-lutional neural networks,an IDCNN model with effective information transmission was established to im-prove the accuracy of feature extraction with a small number of data samples.Tests have shown that the constructed 5G private network has a SINR of 13.98 dB and an RSRP of-85 dBm,which can meet the platform's task requirements.Compared with SVM,CNN,and decision tree models,the proposed model achieves a fault recognition accuracy of over 86.1%,proving the feasibility of this scheme.

port equipmentremote detection and controlhigh speed mobile communicationdeep learningconvolutional neural network

徐晓强、丁峰、毕淑敏

展开 >

芜湖港务有限责任公司,安徽芜湖 241000

港口设备 远程检测与控制 高速移动通信 深度学习 卷积神经网络

2024

工业仪表与自动化装置
陕西鼓风机(集团)有限公司

工业仪表与自动化装置

CSTPCD
影响因子:0.393
ISSN:1000-0682
年,卷(期):2024.(5)