首页|基于机器视觉的工业零件智能分拣系统设计

基于机器视觉的工业零件智能分拣系统设计

扫码查看
针对工业生产中机器视觉与机器人结合广泛的应用需求,该文设计了一种智能分拣系统,该系统基于机器视觉技术,能够识别并定位传送带上运动的目标物体.该系统通过对相机和坐标系的标定来保证机器人识别抓取的定位精度,利用YOLOv5 检测算法识别传送带上的目标物体,并采用形心坐标法来确定目标物体的中心像素坐标,然后运用仿射变换方法来实现对目标物体的精确定位.实验结果表明,本智能分拣系统在工业分拣零件的过程中特定目标工件识别的准确率可以达到98%以上,而机器人定位抓取目标工件的精度误差保持在1mm以内.因此设计的智能分拣系统能够对工业生产中的零件进行高精度的识别定位及抓取,该系统能够有效地满足工业生产中对于零件自动分拣的精确要求,显示出其在工业自动化领域的广泛应用潜力.
Design of intelligent sorting system for industrial parts based on machine vision
This article presents the design of an intelligent sorting system that integrates machine vi-sion with robotics to meet the extensive application demands in industrial production.Specifically,this system is engineered to identify and locate moving target objects on a conveyor belt through machine vi-sion.It ensures precision in the robot's identification and grasping positioning by calibrating the camera and coordinate systems.The system employs the YOLOv5 detection algorithm to recognize target objects on the conveyor belt and utilizes the centroid method to determine the central pixel coordinates of the ob-jects.Subsequently,an affine transformation approach is applied for the precise localization of the target objects.Experimental outcomes indicate that during the industrial part-sorting process,this intelligent sorting system achieves an accuracy rate of over 98%in identifying specific target workpieces.Moreover,the positioning error remains within less than 1 mm when the robot performs the task of grasping these workpieces.Consequently,the designed intelligent sorting system can carry out high-precision identifi-cation,positioning,and grasping of parts in industrial production.The system is capable of effectively meeting the precise requirements for automatic part sorting in industrial production,demonstrating its broad potential applications in the field of industrial automation.

machine visionindustrial robotobject sortingcalibrationrecognition and grasping

陈宜涛、方成刚、张文东、程丽娟

展开 >

南京工业大学 机械与动力工程学院,江苏 南京 211816

机器视觉 工业机器人 物体分拣 标定 识别抓取

2024

工业仪表与自动化装置
陕西鼓风机(集团)有限公司

工业仪表与自动化装置

CSTPCD
影响因子:0.393
ISSN:1000-0682
年,卷(期):2024.(6)