首页|"产业-电力-能源"协同发展能耗指标预测模型研究

"产业-电力-能源"协同发展能耗指标预测模型研究

扫码查看
自"碳达峰碳中和"目标及"能耗双控向碳排放总量和强度双控转变"提出以来,区域能源消费控制与产业发展、电源开发低碳化转型的协调发展需求尤为关键.该文章提出一个"产业-电力-能源"协同发展能耗指标预测模型,该模型通过建立基于随机影响回归的人口、富裕度和技术碳排放预测模型(stochastic impacts by regression on population,affluence,and technology,STIRPAT),并计算产业及能源转型前后相关指标,将产业及能源转型因素计及在区域经济和能源发展目标之中,以预测区域能耗指标变化情况.实例分析表明,该模型可定量得到产业及能源转型、政策影响引起的能源消费及碳排放的空间分布.这对于区域产业引进、电源开发策略的制定具有辅助决策作用,并对推动实现区域碳达峰与碳中和的目标具有重要意义.
Research on the Prediction Model of Energy Consumption Index for the Coordinated Development of Industry-Power-Energy
Since the goal of"carbon peak and carbon neutrality"and the"transformation from dual control of energy consumption to dual control of total carbon emission intensity"have been proposed,the coordinated development needs of regional energy consumption control and industrial development and low-carbon transformation of power supply development have been particularly critical.This paper proposes a prediction model of energy consumption indicators for the coordinated development of"industry-power-energy",which establishes a stochastic impacts by regression on population,affluence,and technology(STIRPAT)based on stochastic impact regression,and calculates the relevant indicators before and after industrial and energy transition.The industrial and energy transition factors are taken into account in the regional economic and energy development goals to predict the changes in regional energy consumption indicators.The case analysis shows that the model can quantitatively obtain the spatial distribution of energy consumption and carbon emissions caused by industrial and energy transition,policy impacts.This has an auxiliary decision-making role in the introduction of regional industries and the formulation of power supply development strategies,and is of great significance to promote the realization of the goals of regional carbon peak and carbon neutrality.

industrial transformationenergy consumptionpower supplySTIRPAT model

周懋文、万航羽、吴政声

展开 >

中国能源建设集团云南省电力设计院有限公司,昆明 650051

产业转型 能源消费 电力供给 STIRPAT模型

云南省哲学社会科学规划社会智库项目

SHZK2024317

2024

电力大数据
贵州电力试验研究院 贵州省电机工程学会

电力大数据

影响因子:0.047
ISSN:2096-4633
年,卷(期):2024.27(4)