首页|基于资源禀赋及负荷特性的低压台区典型场景划分方法

基于资源禀赋及负荷特性的低压台区典型场景划分方法

扫码查看
随着光伏和电动汽车在配电网中的接入比例日益增加,这些非线性和随机性的负荷对配电台区的运行造成了显著影响,频繁引发三相不平衡、电压波动、谐波等电能质量问题.鉴于不同配电台区的源荷组成差异,其面临的电能质量问题及成因也各不相同.为有效解决这些问题,该文提出了一种基于资源禀赋和负荷特性的低压台区典型场景划分方法.首先分析了不同场景下配电台区的运行特征,并据此进行了场景划分;然后采用K-means聚类方法对贵州某地区的示范台区进行了详细分析;通过对基于K-means聚类的算例进行分析,准确识别示范台区内电能质量问题的根本原因,从而验证了所提方法的有效性.
Typical Scene Division of Low-voltage Platform Area Based on Resource Endowment and Load Characteristics
With the increasing access ratio of photovoltaic and electric vehicles in the distribution network,these non-linear and random loads have a significant impact on the operation of the distribution platform area,frequently causing power quality problems such as three-phase imbalance,voltage fluctuation and harmonics.In view of the difference in the source and load composition of different distribution stations,the power quality problems and causes are also different.To solve these problems,this study proposes a typical scene division method for low-voltage stations based on resource endowment and load characteristics.First,the operation characteristics of the distribution stations in different scenarios are analyzed,and then the K-means clustering method is used.By analyzing the examples based on K-means clustering,we can accurately identify the root causes of the power quality problems in the demonstration stations,thus verifying the effectiveness of the proposed method.

distribution networkphotovoltaicelectric vehicleslow-voltage platform areaK-means clusteringload characteristicspower quality

蔡永翔、文钥棋、张忠静、徐玉韬、李星锴、赵春雪

展开 >

贵州电网有限责任公司,贵阳 550002

中国农业大学信息与电气工程学院 北京 100089

贵州大学电气工程学院,贵阳 550025

配电网 光伏系统 电动汽车 低压台区 K-means聚类 负荷特性 电能质量

贵州省科技支撑项目

黔科合支撑[2022]一般012

2024

电力大数据
贵州电力试验研究院 贵州省电机工程学会

电力大数据

影响因子:0.047
ISSN:2096-4633
年,卷(期):2024.27(5)