首页|基于多源数据融合的变电站设备健康状态多维度预警模型研究

基于多源数据融合的变电站设备健康状态多维度预警模型研究

扫码查看
在变电站设备健康状态预警时,由于影响因素较多、分析过程较为复杂,导致评估结果准确度较低.为了缓解这一问题,开展基于多源数据融合的变电站设备健康状态多维度预警模型研究.通过采集多维度的变电站设备数据,将重采样后的数据样本进行融合处理,利用融合数据对变电站设备的健康状态进行评估.在此基础上,以XGBoost算法为核心,建立多维度预警模型,并根据所设置的评估体系作出相应的预警处理.经过实验测试可知,该模型相较于其他方法,分析设备健康状态的ROC曲线更为准确.因此,该模型在变电站设备的实际运维管理工作中具备良好的应用前景.
Research on Multi Dimensional Early Warning Model of Substation Equipment Health Status Based on Multi Source Data Fusion
In the health status warning of substation equipment,due to the many factors that affect the health status of equipment,the analysis process of equipment health status is complex,resulting in low accuracy of the results.To alleviate this problem,a multi-dimensional warning model for the health status of substation equipment based on multi-source data fusion has been proposed.Collect multi-dimensional substation equipment data and expand the data samples through resampling processing.Perform multi-source data fusion processing on the resampled data samples to evaluate the health status of substation equipment using the fused data.On this basis,a multidimensional warning model is established with XGBoost algorithm as the core,and corresponding warning processing is made according to the set evaluation system.Through experimental testing,it is known that the model has demonstrated a high level of accuracy in practical applications.Compared with other methods,the model has more accurate analysis of equipment health status,better ROC curve,and higher early warning accuracy,which has a good application prospect in the actual operation and maintenance management of substation equipment.

device health statusmulti source data fusionmultidimensionalearly warning model

张历、张俊杰、李鑫卓、毛先胤、骆约约

展开 >

贵州电网有限公司电力科学研究院,贵州贵阳 550002

贵州电网有限责任公司六盘水供电局,贵州 六盘水 553000

设备健康状态 多源数据融合 多维度 预警模型

2024

电力大数据
贵州电力试验研究院 贵州省电机工程学会

电力大数据

影响因子:0.047
ISSN:2096-4633
年,卷(期):2024.27(10)