首页|基于相互学习的遮挡条件下现场作业人员识别技术研究

基于相互学习的遮挡条件下现场作业人员识别技术研究

扫码查看
针对遮挡条件下现场作业人员识别技术,本文提出了一种基于相互学习的全局特征表示方法.该方法设计了一个多分支网络架构,其中各分支独立专注于处理遮挡与非遮挡场景下的作业人员图像,通过相互学习机制,实现了两种极端场景下特征提取能力的互补与共同提升.具体而言,采用类别互学习和特征互对比策略,不仅促进了模型在遮挡与非遮挡数据间的类别一致性,还强化了特征层面的相互借鉴,从而显著增强了全局特征表示的鲁棒性和判别性.此外,为了更贴近实际作业场景,引入了基于真实场景模拟的数据增强技术,通过生成高度逼真的遮挡数据,有效提升了模型在复杂遮挡环境下的泛化能力.实验结果显示,该方法在遮挡条件下现场作业人员识别任务中展现出了卓越的性能.
Research on Field Worker Identification Technology Under Occlusion Conditions Based on Mutual Learning
Targeting the recognition of on-site workers under occlusion conditions,this paper proposes a global feature representation method based on mutual learning.The method designs a multi-branch network architecture,where each branch independently focuses on processing images of workers in both occluded and non-occluded scenarios.Through a mutual learning mechanism,the complementary and joint improvement of feature extraction capabilities in these two extreme scenarios are achieved.Specifically,by adopting category mutual learning and feature mutual comparison strategies,not only the category consistency between occluded and non-occluded data is promoted,but also the mutual reference at the feature level is strengthened,thereby significantly enhancing the robustness and discriminability of the global feature representation.Furthermore,to better align with actual operational scenes,a data augmentation technique based on real-scenario simulation has been introduced.By generating highly realistic occlusion data,the generalization ability of the model in complex occlusion environments has been effectively improved.Experimental results show that the proposed method exhibits excellent performance in the task of recognizing on-site workers under occlusion conditions.

deep learningfield worker identificationocclusionfeature extractionrobustness

郑汉清、徐铮、贾大昌、晏明昊、张涵艺、黄源航、杜清华

展开 >

国网江苏省电力有限公司无锡供电公司,江苏 无锡 214000

深度学习 现场作业人员识别 遮挡 特征提取 鲁棒性

2024

电力大数据
贵州电力试验研究院 贵州省电机工程学会

电力大数据

影响因子:0.047
ISSN:2096-4633
年,卷(期):2024.27(12)