首页|面向海水水质检测的无人船艏向角轨迹跟踪控制策略

面向海水水质检测的无人船艏向角轨迹跟踪控制策略

扫码查看
为了提升深海远洋牧场水产品产质,需解决智能无人船执行水质检测轨迹偏离问题.为此提出基于艏向角控制的无人船模糊PID轨迹跟踪控制算法,通过无人船与当前目标点相对位置的偏差计算无人船的目标艏向角,基于无人船的运动学模型建立模糊PID的控制方法控制无人船两侧电机转速差值,进而控制无人船艏向角,使无人船按规划路径行走.试验结果显示,与经典PID相比,模糊PID在艏向控制方面表现更佳,平均RNL(曲线拟合优度)值提高0.689,转速差控制方面提高1.033,为无人船沿规划路径精确行进提供了有效手段.
Research on Bow Angular Trajectory Tracking Control Strategy of Unmanned Ship for Seawater Quality Detection
In order to improve the quality of aquatic products in deep-sea and long-distance ranches,intelligent unmanned ships need to solve the problem of trajectory deviation when performing water quality detection.Based on this,a fuzzy PID trajectory tracking control algorithm for unmanned ships based on heading angle control is designed.The target heading angle of the unmanned ship is calculated by the deviation of the relative position between the unmanned ship and the current target point.Based on the kinematic model of the unmanned ship,a fuzzy PID control method is established to control the difference in motor speeds on both sides of the unmanned ship,and then control the heading angle of the unmanned ship,so that it can walk along the planned path.The experimental results show that compared with classical PID,fuzzy PID performs better in bow control,with an average RNL(curve fitting goodness of fit)increase of 0.689 and a speed difference control increase of 1.033,providing an effective method for unmanned ships to travel accurately along the planned path.

intelligent unmanned shiptrajectory trackingsteer controlGoodness-of-fit of the curve

赖嘉雄、林忠华、陈晓昆、李先强、李海舰、范健宇

展开 >

集美大学 海洋装备与机械工程学院,福建 厦门 361021

海洋可再生能源装备福建省高校重点实验室,福建 厦门 361021

福建省能源清洁利用与开发重点实验室,福建 厦门 361021

智能无人船 轨迹跟踪 艏向角控制 曲线拟合优度

福建省高校产学合作项目2030福建绿色智能船舶专项

2023H61010068CBG4N21-4-4

2024

广州航海学院学报
广州航海高等专科学校

广州航海学院学报

影响因子:0.155
ISSN:1009-8526
年,卷(期):2024.32(2)
  • 6