首页|基于深度学习的纺织物缺陷检测技术研究

基于深度学习的纺织物缺陷检测技术研究

扫码查看
传统的纺织物缺陷检测主要依赖人工,存在主观性强、效率低和准确率不高的问题.探讨了深度学习技术在自动化纺织物缺陷检测中的应用,特别是MLP、CNN、VGG16和ResNet50模型.通过准确率、训练损失、混淆矩阵、ROC曲线和t-SNE聚类效果等指标,对这些模型在特定数据集上的表现进行了评估.结果显示:ResNet50模型在测试集上的准确率达到96.0%,AUC值超过0.91,Silhouette Score值为0.7731,Davies-Bouldin Index值为0.3195,表现出最优的检测性能.此外,针对实际生产中存在的上百种缺陷种类,还研究了层次分类方法,通过树状结构的分类策略,进一步提高了缺陷检测的准确率至85.4%.为提高纺织品质量检测的自动化水平提供了有效的技术支持.
Research on detection technology of textile defects based on deep learning
The traditional approach to textile defect detection relies on manual labour,which is subject to a num-ber of limitations in terms of its reliability,efficiency and accuracy.The application of deep learning techniques in automated textile defect detection is discussed,with a particular focus on the use of MLP,CNN,VGG16,and ResNet50 models.The performance of these models on specific datasets was evaluated through a series of met-rics,including accuracy,training loss,confusion matrix,receiver operating characteristic(ROC)curve,and t-dis-tributed stochastic neighbor embedding(t-SNE)clustering effect.The results demonstrate that the ResNet50 model exhibits optimal detection performance on the test set,with an accuracy of 96.0%,an AUC value of over 0.91,a Silhouette Score value of 0.7731,and a Davies-Bouldin Index value of 0.3195.Furthermore,a hierarchi-cal classification method was explored for hundreds of defect types present in the actual production process.The accuracy of defect detection was enhanced to 85.4%through the implementation of a tree-structured classi-fication strategy.Effective technical support is provided to facilitate the automation of textile quality inspection.

deep learningtextile materialdefect detectionimage classificationconvolutional neural network

杜焱铭、袁子厚、郑兴任、张红伟

展开 >

武汉纺织大学机械工程与自动化学院,武汉,430200

武汉纺织大学湖北数字纺织设备重点实验室,武汉,430200

深度学习 纺织物 缺陷检测 图像分类 卷积神经网络

2024

服饰导刊
湖北财经高等专科学校

服饰导刊

影响因子:0.261
ISSN:2095-4131
年,卷(期):2024.2(6)