首页|U型神经网络结合BiLSTM网络的地震相识别系统

U型神经网络结合BiLSTM网络的地震相识别系统

扫码查看
以BiLSTM网络为基础识别框架,通过在BiLSTM网络结构中引入U型卷积神经网络进行改进,并采用改进的BiLSTM网络对地震相进行识别,实现了地震P波和S波震相的精确识别.仿真结果表明:该方法可有效、准确地识别地震P波和S波震相,平均识别正确率为 90.01%,平均漏检率和均方根误差分别为 11.00%和 0.23,相较于BiLSTM网络以及常用地震相识别MEA-BP神经网络模型和CNN模型,该方法对地震相的识别精度更高,具有明显的优越性,为实现地震相的精确识别提供了参考.
Research on Seismic Phase Recognition System Using U-shaped Neural Network Combined with BiLSTM Network
To improve the accuracy of seismic phase identification,a deep learning-based seismic phase identification method is proposed.This method is based on the BiLSTM network recognition framework,improved by introducing a U-shaped convolutional neural network into the BiLSTM network structure.The improved BiLSTM network was used to identify seismic phases,achieving accurate identification of seismic P-wave and S-wave phases.The simulation results show that this method can effectively and accurately identify seismic P-wave and S-wave phases,with an average recognition accuracy of 90.01%,an average missed detection rate of 11.00%,and a root mean square error of 0.23.Compared with BiLSTM network,commonly used seismic phase recognition MEA-BP neural network models,and CNN models,this method has higher recognition accuracy for seismic phases and obvious advantages,providing a reference for achieving accurate identification of seismic phases.

deep learningseismic phase identificationBiLSTM networkU-shaped convolutional neural network

王天哲

展开 >

中国地质大学(北京),北京 100083

深度学习 地震相识别 BiLSTM网络 U型卷积神经网络

2024

华北地震科学
河北省地震局

华北地震科学

CSTPCD
影响因子:0.598
ISSN:1003-1375
年,卷(期):2024.42(4)