首页|改进YOLOv5的沥青路面裂缝检测方法

改进YOLOv5的沥青路面裂缝检测方法

扫码查看
针对YOLOv5 在裂缝图像目标检测中未能考虑到裂缝图像背景复杂,检测目标较小导致检测效果不佳和易出现误检漏检的问题,提出了一种改进YOLOv5 的沥青路面裂缝检测方法.该算法首先将轻量级Mobilenet v3 的网络作为YOLOv5 的特征提取骨干网络,以降低模型复杂度并加快推理速度.同时,在网络预测端引入高效通道注意力机制,提升网络局部特征捕获和融合能力.最后,通过一个嵌入Panet模块来强化裂缝图像的多尺度特征表达能力,提高对小目标的检测效果.实验结果表明,相比于原始YOLOv5 算法,改进后的YOLOv5 进行沥青路面裂缝检测的平均精度提高了5.6%,模型参数量降低了86.3%,图像检测时间减少了75.8%.
Asphalt Pavement Crack Detection Method Based on Improved YOLOv5
A improved YOLOv5 asphalt pavement crack detection method is proposed to address the i-ssues of complex crack image backgrounds,small detection targets,poor detection performance,and missed detections in YOLOv5 crack detection.Firstly,the lightweight Mobilenet v3 network,as the fea-ture extraction network of YOLOv5,is used to reduce the complexity of the model and speed up reaso-ning.Secondly,an efficient channel attention mechanism(CBAM)is employed to enhance the net-work's ability to capture and fuse local features.Finally,an embedded Panet module is used to en-hance the multi-scale feature expression ability of crack images and improve the detection performance of small targets.The experimental results show that compared to the original YOLOv5 algorithm,the im-proved YOLOv5 algorithm improves the mAP of asphalt pavement crack detection by 5.5%,reduces the number of model parameters by 86.3%,and reduces image detection time by 75.8%.

YOLOv5object detectionasphalt pavementcrack detection

王莉静、孙泽然、李志猛、丰吉科

展开 >

天津城建大学 控制与机械工程学院,天津 300384

YOLOv5 目标检测 沥青路面 裂缝检测

天津市自然科学基金天津城建大学研究生教育教学改革与研究重点项目

20YDTPJC00840JG-ZD-2205

2024

河北工程大学学报(自然科学版)
河北工程大学

河北工程大学学报(自然科学版)

CSTPCD
影响因子:0.543
ISSN:1673-9469
年,卷(期):2024.41(3)
  • 9