首页|不同森林类型中UAV-LiDAR单木分割方法的性能评估

不同森林类型中UAV-LiDAR单木分割方法的性能评估

扫码查看
为了评估不同的单木分割方法,以确定在多种森林类型中使用无人机激光雷达进行高精度单木分割的最佳方法和参数设置,本研究比较了利用冠层高度模型(CHM)和归一化点云(NPC)数据的四种不同方法,使用了分水岭、可变窗口搜索、点云分割和K-means聚类进行单木分割,并从三种森林类型的九个样地中提取树高参数.通过实测样地数据对分割结果进行性能评估,并探讨了不同分割参数对结果的影响.在所有样地中,单木分割的总体F得分在0.63到0.9之间,不同单木分割方法之间的差异较大.可变窗口搜索的泛用性好,而PCS在复杂情况的单木分割中表现更佳,两者在不同复杂程度的样地中分割精度呈现互补状,采取差异化的分割方法策略有助于提高分割任务的效率和精度.分析和总结了各单木分割方法在不同林分条件下的分割性能及参数设置方案,为无人机激光雷达技术准确获取森林结构参数的提供了重要参考.
UAV-LiDAR Single Tree Segmentation Methods in Different Forest Types Performance Evaluation
In order to evaluate different single tree segmentation methods and determine the optimal method and param-eter settings for high-precision single tree segmentation using unmanned aerial vehicle LiDAR in multiple forest types,this study compared four different methods using canopy height model(CHM)and normalized point cloud(NPC)data.Wa-tershed,variable window search,point cloud segmentation,and K-means clustering were used for single tree segmenta-tion,and tree height parameters were extracted from nine plots of three forest types.Performance evaluation of segmen-tation results was conducted through actual measurement of plot data,and the influence of different segmentation param-eters on the results was explored.Among all the plots,the overall F-score of single tree segmentation ranges from 0.63 to 0.9,with significant differences between different single tree segmentation methods.The versatility of variable window search is good,while PCS performs better in complex single tree segmentation.The segmentation accuracy of the two ap-proaches is complementary in plots of different levels of complexity.Adopting differentiated segmentation strategies can help improve the efficiency and accuracy of segmentation tasks.Analyzed and summarized the segmentation performance and parameter setting schemes of various single tree segmentation methods under different forest stand conditions,provi-ding important reference for the accurate acquisition of forest structural parameters by unmanned aerial vehicle LiDAR technology.

UAV-LiDARforest resource surveysingle wood segmentationparameter sensitivity analysistree height extraction

戴渺鸿、贡鸣、陈强、曹爱平、潘政尚

展开 >

湖北省林业科技推广中心 武汉 430079

湖北省林业调查规划院 武汉 430079

无人机激光雷达 森林资源调查 单木分割 参数敏感性分析 树高提取

2024

湖北林业科技
湖北省林业科学研究院

湖北林业科技

影响因子:0.398
ISSN:1004-3020
年,卷(期):2024.53(6)