首页|基于融合影响因素PSO-Prophet模型的农产品价格预测

基于融合影响因素PSO-Prophet模型的农产品价格预测

扫码查看
为了提高价格预测的准确度,在Prophet模型中融入了消费者物价指数(CPI)和经济政策不确定性指数(EPU)等影响因素,并使用粒子群算法优化参数。利用国际大蒜贸易网中的日价格数据,将该方法应用于山东省大蒜的价格预测。结果表明,融合影响因素的PSO-Prophet模型大蒜价格预测结果的平均绝对误差(MAE)、平均绝对百分比误差(MAPE)和均方根误差(RMSE)比Prophet模型分别降低了82。88%、82。86%和77。49%。融合影响因素的PSO-Prophet模型可以有效提高预测精度。
Agricultural product price prediction based on the PSO-Prophet model with integrated influencing factors
In order to improve the accuracy of price prediction,factors such as the consumer price index(CPI)and economic policy uncertainty index(EPU)were incorporated into the Prophet model,and the particle swarm optimization algorithm was used to opti-mize the parameters.Using the daily price data from the International Garlic Trade Network,this method was applied to predict the price of garlic in Shandong Province.The results showed that the mean absolute error(MAE),mean absolute percentage error(MAPE),and root mean square error(RMSE)of the garlic price prediction results on the PSO-Prophet model with integrated influ-encing factors were reduced by 82.88%,82.86%,and 77.49%,respectively,compared to the Prophet model.The PSO-Prophet mod-el with integrated influencing factors could effectively improve prediction accuracy.

price forecastingintegrated influencing factorsProphet modelPSO-Prophet modelagricultural products

刘合兵、王一飞、王垒、席磊、尚俊平

展开 >

河南农业大学信息与管理科学学院,郑州 450046

价格预测 融合影响因素 Prophet模型 PSO-Prophet模型 农产品

河南省科技攻关项目河南省科技攻关项目河南省现代农业产业技术体系项目

212102110204222102110234S2010-01-G04

2024

湖北农业科学
湖北省农业科学院 华中农业大学 长江大学 黄冈师范学院

湖北农业科学

CSTPCD
影响因子:0.442
ISSN:0439-8114
年,卷(期):2024.63(1)
  • 20