首页|长江经济带耕地碳排放时空格局演变及其影响因素

长江经济带耕地碳排放时空格局演变及其影响因素

扫码查看
为厘清耕地绿色利用状况,采用IPCC碳排放系数法测算2000-2020年长江经济带129个地级市耕地碳排放,利用空间自相关分析揭示耕地碳排放时空特征演化,运用LMDI模型分解各影响因素的贡献。结果表明,2000-2020年长江经济带耕地碳排放量在时间上呈下降趋势,呈"保持稳定—快速增长—缓慢增长—缓慢下降"四个阶段;在空间上呈中、东部高,西部低的态势,存在显著的全局空间自相关,局部高-高聚集区分布于长江中下游地区,低-高聚集区分布于中游地区,低-低聚集区则主要分布于上游地区;区域内农业碳排放的促进因素是农业经济水平,抑制因素主要是农业生产效率,其次是农业生产结构,最后是农业劳动力规模。为此,长江经济带耕地碳排放的时空差异显著,各地区应因地制宜制定碳减排策略和土地利用管制规划,提升农业生产效率,优化农业种植结构,加强区域联动,推进低碳农业协同发展。
Spatiotemporal pattern evolution and influencing factors of carbon emissions from arable land in the Yangtze River Economic Belt
To clarify the green utilization of arable land,the IPCC carbon emission coefficient method was used to calculate the carbon emissions of arable land in 129 prefecture-level cities of the Yangtze River Economic Belt from 2000 to 2020.Spatial autocorrelation analysis was used to reveal the spatiotemporal evolution of arable land carbon emissions,and the LMDI model was used to decompose the contributions of various influencing factors.The results showed that from 2000 to 2020,the carbon emissions from arable land in the Yangtze River Economic Belt showed a downward trend over time,showing four stages,such as"maintaining stability—rapid growth—slow growth—slow decline".In terms of space,there was a trend of high in the middle and east and low in the west,with sig-nificant global spatial autocorrelation.Local high-high clustering areas were distributed in the middle and lower reaches of the Yangtze River,low-high clustering areas were distributed in the middle reaches,and low-low clustering areas were mainly distributed in the upstream area.The promoting factor for agricultural carbon emissions within the region was the level of agricultural economy,while the inhibiting factor was mainly agricultural production efficiency,followed by agricultural production structure,and finally the scale of agricultural labor force.Therefore,there was a significant spatiotemporal difference in carbon emissions from arable land in the Yang-tze River Economic Belt.Each region should develop carbon reduction strategies and land use control plans according to local condi-tions,improve agricultural production efficiency,optimize agricultural planting structure,strengthen regional linkage,and promote the coordinated development of low-carbon agriculture.

Yangtze River Economic Beltcarbon emissions from arable landspatial-temporal patternspatial autocorrelationLMDI model

刘璇、孙燕、马静、张天旺、陈浮

展开 >

河海大学,公共管理学院,南京 211100

河海大学,能源与电气学院,南京 211100

长江经济带 耕地碳排放 时空格局 空间自相关 LMDI模型

国家科技支撑计划项目大学生创新创业训练计划项目

2015BAD06B022022102941100

2024

湖北农业科学
湖北省农业科学院 华中农业大学 长江大学 黄冈师范学院

湖北农业科学

CSTPCD
影响因子:0.442
ISSN:0439-8114
年,卷(期):2024.63(2)
  • 22