首页|基于改进U-Net的冬季休眠期矮化苹果树修剪枝条分割方法

基于改进U-Net的冬季休眠期矮化苹果树修剪枝条分割方法

扫码查看
针对冬季休眠期矮化苹果树果园修剪中人工修剪及半自动化修剪作业效率低的问题,在U-Net网络模型基础上,通过VGG16与U-Net结合构建改进的U-Net网络模型,采用VGG16作为上采样特征提取网络,运用注意力机制SEnet增强图像特征提取能力,提升分割精度,进而与下采样提取的图像特征进行融合,实现端到端图像分割效果。结果表明,测试集上SE2网络模型(改进U-Net网络模型)的MIoU、MPA均大于原始U-Net网络模型;在SE2网络模型中,当r=8时测试集的MIoU、测试集的MPA、训练集的Fscore、测试集的Fscore均最大,分别为89。59%、94。17%、0。942 806、0。944 506;在试验台上对SE2网络模型(r=8)进行性能验证,表明SE2网络模型(r=8)分割性能较好。
Segmentation method for pruned branches of dwarfing apple trees during winter dormancy period based on improved U-Net
In response to the low efficiency of manual and semi-automatic pruning operations in dwarfing apple trees during the winter dormancy period,based on the U-Net network model,an improved U-Net network model was constructed by combining VGG16 with U-Net.Using VGG16 as the upsampling feature extraction network,the attention mechanism SEnet was used to enhance the image fea-ture extraction ability,improve segmentation accuracy,and then fuse with the downsampling extracted image features to achieve the end-to-end image segmentation effect.The results showed that the MIoU and MPA of the SE2 network model(improved U-Net net-work model)on the test set were greater than those of the original U-Net network model;in the SE2 network model,when r=8,the MIoU of the test set,MPA of the test set,Fscore of the training set,and Fscore of the test set were all the highest,with values of 89.59%,94.17%,0.942 806,and 0.944 506,respectively;the performance of the SE2 network model(r=8)was validated on the test bench,and it was found that the segmentation performance of the SE2 network model(r=8)was good.

improved U-Netnetwork modelwinter dormancy perioddwarfing apple treespruned branchessegmentation method

宋振帅、宋龙、周艳、何磊、朱贺、王治民、韩大龙

展开 >

石河子大学机械电气工程学院,新疆 石河子 832003

新疆农垦科学院机械装备研究所,新疆 石河子 832000

改进U-Net 网络模型 冬季休眠期 矮化苹果树 修剪枝条 分割方法

新疆生产建设兵团重大科技项目国家重点研发计划新疆生产建设兵团农业领域科技攻关计划重点项目

2021AA005032017YFD070142018AB016

2024

湖北农业科学
湖北省农业科学院 华中农业大学 长江大学 黄冈师范学院

湖北农业科学

CSTPCD
影响因子:0.442
ISSN:0439-8114
年,卷(期):2024.63(5)
  • 4