首页|基于改进深度置信网络的水果分类识别方法

基于改进深度置信网络的水果分类识别方法

扫码查看
为了解决现有水果分类识别方法存在的识别精度低等问题.基于水果分类识别系统,提出了一种用于不同水果分类识别的改进深度置信网络.通过2路深度置信网络将不同特征图像作为输入,使用SoftMax对输出分类.与常规分类识别方法相比,所提方法能较准确地实现不同水果的分类识别,多特征融合识别准确率最高,识别准确率为98.75%,满足水果分类识别的需要.通过优化现有深度学习方法,可有效提高该方法的性能.
Fruit classification recognition methods based on improved deep confidence network
In order to solve the problems of low recognition accuracy in existing fruit classification recognition methods,based on the fruit classification recognition system,an improved deep confidence network for different fruit classification recognition was proposed.Different feature images were taken as input through 2-channel deep confidence network,and the output was classified using SoftMax.Compared with the conventional classification recognition methods,the proposed method could more accurately achieve the classifica-tion recognition of different fruits,and the multi-feature fusion recognition accuracy was the highest,with the recognition accuracy of 98.75%,which met the needs of fruit classification recognition.By optimizing the existing deep learning method,the performance of this method could be effectively improved.

fruit recognitionautomatic detectiondeep confidence networkmulti-feature fusionSoftMax classifier

郭迎娣、赵超宇

展开 >

烟台职业学院智能控制系,山东 烟台 264670

山东农业大学农学院,山东 泰安 271001

水果识别 自动检测 深度置信网络 多特征融合 SoftMax分类器

烟台职业学院校本科研项目山东省教育厅教育课题项目

2023XBZC0352014zcj081

2024

湖北农业科学
湖北省农业科学院 华中农业大学 长江大学 黄冈师范学院

湖北农业科学

CSTPCD
影响因子:0.442
ISSN:0439-8114
年,卷(期):2024.63(8)
  • 18