In order to realize the pruning recognition of dormant fruit trees,a network model based on semantic segmentation was stud-ied to identify pruned branches and determine the coordinates of pruning points.A binocular camera was used to build a visual system to obtain the data set of fruit trees.VGG16 and RestNet-50,which were respectively integrated with pre-training weights and CBAM(attention mechanism),were used as two deep learning models of U-Net backbone feature extraction network to segment pruned branches.At the same time,their effects were obtained and compared.Based on the obtained segmented image,two methods,skele-ton extraction and pruning point clustering,were used to determine the coordinates of pruning points.The results showed that the U-Net model based on VGG16 feature extraction network had better recognition results.The mean intersection over union(MIOU),mean pixel accuracy(MPA)and F scores during the training of the model were 84.80%,91.83%and 92.679%respectively.By segmenting the model image of artificial simulated fruit trees and using the pruning point clustering method,the two-dimensional coordinates of pruning points could be determined quickly and in real time,which laid the foundation for pruning operations.
branches identificationcoordinates of pruning pointsextractionpre-training weightCBAM(attention mechanism)