首页|基于Ghost模块的农资图像文本检测算法及其应用

基于Ghost模块的农资图像文本检测算法及其应用

The text detection algorithm for agricultural materials image based on Ghost module and its application

扫码查看
针对农资图像中文本的检测速度慢并且缺乏移动端的应用等问题,基于农资图像数据集,提出了一种基于Ghost模块的农资图像文本检测算法,该算法对DB网络进行改进,使用MobileNetv2网络来提取基础特征,引入多尺度特征融合模块来获得多层之间的特征融合,并采用可微分二值化后处理算法预测文本,使其能够快速地检测农资图像中的文本.该算法在农资图像数据集上的准确率基本达到了主流算法的标准,检测速度达18.6 img/s,参数量为2.99 M,具备轻量级的特征,将此算法部署到移动端设备上并成功运行.
In response to problems such as slow detection speed of text in agricultural materials image and lack of mobile applications,based on the agricultural materials image dataset,a Ghost module-based text detection algorithm for agricultural materials image was proposed,which improved the DB network,used the MobileNetv2 network to extract the base features,introduced a multi-scale fea-ture fusion module to obtain feature fusion between multiple layers,and used a differentiable binary post-processing algorithm to pre-dict the text,making it possible to quickly detect the text in agricultural materials image.The accuracy of the algorithm on the agricul-tural materials image dataset was basically up to the standard of mainstream algorithms,with a detection speed of 18.6 img/s and a cen-sus count of 2.99 M,with lightweight features,and the algorithm was deployed to mobile devices and ran successfully.

agricultural materials imagetext detectiontext recognitionGhost module

殷昌山、杨林楠、罗爽

展开 >

云南农业大学大数据学院/云南省农业大数据工程技术研究中心/绿色农产品大数据智能信息处理工程研究中心,昆明 650201

农资图像 文本检测 文本识别 Ghost模块

云南省重大科技专项计划

202102AE090015

2024

湖北农业科学
湖北省农业科学院 华中农业大学 长江大学 黄冈师范学院

湖北农业科学

CSTPCD
影响因子:0.442
ISSN:0439-8114
年,卷(期):2024.63(8)
  • 2