首页|基于混合蚁群算法的无人化农机路径寻优研究

基于混合蚁群算法的无人化农机路径寻优研究

扫码查看
针对智慧农业中复杂环境下无人化农机路径规划寻优过程中存在的迭代速度慢、路径安全性较低等问题,融合人工势场、量子行为以及基于B样条的平滑策略提出了混合蚁群算法.该方法在迭代初期引入人工势场法,以解决迭代速度慢问题以及实现全局最优平衡;在路径寻优的中期加入量子行为优化信息密度阈值,改进算法状态选择概率,避免算法陷入局部最优,以提高获取优质解的能力;在迭代后期融合基于B样条的平滑策略,优化最优路径,提高无人化农机避障能力.仿真试验结果表明,基于混合蚁群算法的无人化农机在复杂环境作业时,路径寻优能力得到有效提升,路径优化响应速度提升了73倍,路径优化后距离缩短超过11.8%.
Research on path optimization of unmanned agricultural machinery based on hybrid ant colony algorithm
In addressing the challenges of slow iteration speed and low path safety in the optimization process of unmanned agricultural machinery path planning under complex environments in smart agriculture,a hybrid ant colony algorithm was proposed,integrating ar-tificial potential fields,quantum behavior and a B-spline-based smoothing strategy.This method introduced artificial potential fields in the early iterations to address the issues of slow iteration speed and balance global optimality.In the mid-term of path optimization,quantum behavior was incorporated to enhance the algorithm's capability to obtain high-quality solutions by adjusting the information density threshold,improving algorithm state selection probabilities,and avoiding local optima.In the later stages of iteration,the B-spline-based smoothing strategy was integrated to optimize the optimal path and enhance the obstacle avoidance capability of un-manned agricultural machinery.Simulation experiment results demonstrated that the unmanned agricultural machinery based on the hy-brid ant colony algorithm showed significantly improved path optimization ability in complex environments.The response speed of path optimization was increased by 73 times,and the distance was reduced by over 11.8%after path optimization.

smart agricultureunmanned agricultural machinerypath optimizationhybrid ant colony algorithmobstacle avoid-anceartificial potential fields

杨会甲、张亚军、王鹏杰、王东、王亚平

展开 >

西安航天自动化股份有限公司,西安 710065

陕西省"四主体一联合"智慧农业数据处理与服务校企联合研究中心,西安 710065

西北农林科技大学机械与电子工程学院,陕西 杨凌 712100

智慧农业 无人化农机 路径寻优 混合蚁群算法 避障 人工势场

陕西省科技厅重点产业链提升计划项目

2020zdzx03-04-02

2024

湖北农业科学
湖北省农业科学院 华中农业大学 长江大学 黄冈师范学院

湖北农业科学

CSTPCD
影响因子:0.442
ISSN:0439-8114
年,卷(期):2024.63(8)
  • 7