湖北农业科学2024,Vol.63Issue(8) :257-261,295.DOI:10.14088/j.cnki.issn0439-8114.2024.08.043

基于光谱反射率的甘薯叶片钾素营养监测与诊断

Monitoring and diagnosis of potassium nutrition in Ipomoea batatas leaves based on spectral reflectivity

鲁燕君 王旭伟 胡继杰 陈少杰 陈玉 吕尊富
湖北农业科学2024,Vol.63Issue(8) :257-261,295.DOI:10.14088/j.cnki.issn0439-8114.2024.08.043

基于光谱反射率的甘薯叶片钾素营养监测与诊断

Monitoring and diagnosis of potassium nutrition in Ipomoea batatas leaves based on spectral reflectivity

鲁燕君 1王旭伟 2胡继杰 2陈少杰 2陈玉 3吕尊富4
扫码查看

作者信息

  • 1. 杭州市临安区农林技术推广中心,杭州 311399
  • 2. 宁波市农技推广总站,浙江 宁波 315042
  • 3. 杭州市临安区科学技术局,杭州 311302
  • 4. 浙江农林大学现代农学院/浙江省农产品品质改良技术研究重点实验室,杭州 311300
  • 折叠

摘要

以商薯19和心香 2个甘薯(Ipomoea batatas)品种为试验材料,通过设置不同梯度钾素处理测定叶片的光谱反射率,分别构建基于比值植被指数(RVI)的甘薯叶片钾含量和钾营养指数预测模型.结果表明,RVI与叶片钾含量构建的线性模型表明,RVI(R1 598 nm,R1 771 nm)对甘薯叶片钾含量的预测精度较高,回归方程为y=58.601 0x-58.446(R2=0.741 4,RMSE=0.83),采用验证数据对线性模型进行检验,模型对不同钾肥水平处理下的甘薯叶片钾含量具有较好的预测能力(R2=0.732 4,RMSE=0.85);RVI与钾营养指数构建的线性模型表明,RVI(R700 nm,R1 385 nm)对甘薯叶片钾营养指数的预测精度较高,回归方程为y=6.032 9x-0.833(R2=0.768 8,RMSE=0.15),采用验证数据对线性模型进行检验,模型对不同钾肥水平处理下的甘薯叶片钾营养指数具有较好的预测能力(R2=0.639 5,RMSE=0.20);利用RVI能够较好监测与诊断甘薯钾素营养.

Abstract

Two Ipomoea batatas varieties,Shangshu 19 and Xinxiang,were used as experimental materials.By setting different gradi-ent potassium treatments to determine the spectral reflectance of leaves,Ipomoea batatas leaves potassium content and potassium nutri-ent index prediction models were constructed based on the ratio vegetation index(RVI).The results showed that the linear model con-structed by RVI and potassium content in leaves showed that RVI(R1 598 nm,R1 771nm)had a high prediction accuracy for potassium con-tent in Ipomoea batatas leaves,the regression equation was y=58.601 0x-58.446(R2=0.741 4,RMSE=0.83),using validation data to test the linear model,the model showed good predictive ability for potassium content in Ipomoea batatas leaves under different potassi-um fertilizer levels(R2=0.732 4,RMSE=0.85);the linear model constructed by RVI and potassium nutrition index indicated that RVI(R700 nm,R1 385 nm)had a high prediction accuracy for the potassium nutrition index of Ipomoea batatas leaves,the regression equation was y=6.032 9x-0.833(R2=0.768 8,RMSE=0.15),using validation data to test the linear model,the model showed good predictive ability for the potassium nutrient index of Ipomoea batatas leaves under different potassium fertilizer levels(R2=0.639 5,RMSE=0.20);the use of RVI could effectively monitor and diagnose potassium nutrition in Ipomoea batatas.

关键词

甘薯(Ipomoea/batatas)/光谱/反射率/钾素营养/监测/诊断

Key words

Ipomoea batatas/spectral/reflectivity/potassium nutrition/monitoring/diagnosis

引用本文复制引用

基金项目

国家自然科学基金项目(32071897)

国家自然科学基金项目(32272222)

宁波市重点项目(2022S092)

浙江省粮油产业技术项目()

出版年

2024
湖北农业科学
湖北省农业科学院 华中农业大学 长江大学 黄冈师范学院

湖北农业科学

CSTPCD
影响因子:0.442
ISSN:0439-8114
参考文献量9
段落导航相关论文