首页|基于秃鹰搜索算法优化ELM的锂电池剩余寿命预测

基于秃鹰搜索算法优化ELM的锂电池剩余寿命预测

扫码查看
提出了一种基于多种数据驱动法融合来实现电池剩余使用寿命预测的方法。首先分析了电池寿命的相关特征参数,选取相关性较高的参数作为间接健康因子;然后构建了秃鹰搜索算法和优化极限学习机的组合预测模型;最后通过使用NASA电池数据集验证了该预测模型的可行性和准确性。结果表明,相较于神经网络和极限学习机的预测方法,文中模型的预测均方根误差均小于2%,预测精度更可靠、更精确。
Remaining Life Prediction of Lithium Batteries Based on Bald Eagle Search Algorithm and Optimized ELM
A method for predicting the remaining life of batteries based on the fusion of multiple data-driven methods was proposed.Firstly,the relevant characteristic parameters of battery life were ana-lyzed,and the parameters with higher correlation were selected as indirect health factors.Then,a pre-diction model combining bald eagle search algorithm and optimized extreme learning machine(ELM)was constructed.Finally,the feasibility and accuracy of the prediction model were validated using the NASA battery dataset.The experimental results show that compared to that of the prediction methods based on neural networks and ELM,the root-mean-square errors of the prediction model in this paper are all within 2%,and the prediction accuracy is more reliable and precise.

bald eagle search algorithmextreme learning machinelife predictionlithium battery

石艳辉、江学焕、陈凯

展开 >

湖北汽车工业学院 电气与信息工程学院,湖北 十堰 442002

采埃孚汽车安全系统(武汉)有限公司,湖北 武汉 430000

秃鹰搜索算法 极限学习机 寿命预测 锂离子电池

2024

湖北汽车工业学院学报
湖北汽车工业学院

湖北汽车工业学院学报

影响因子:0.304
ISSN:1008-5483
年,卷(期):2024.38(2)