首页|面向小目标检测的轻量化改进CenterNet算法

面向小目标检测的轻量化改进CenterNet算法

扫码查看
为提高传统目标检测算法的实时性,并解决小目标检测效果不佳及漏检率高的问题,提出了改进Center-Net算法.首先将特征提取网络由ResNet50改为SqueezeNet,卷积计算的部分用深度可分离卷积代替;接着使用双阈值改进NMS算法替代单阈值-非极大值抑制算法,通过DIoU计算损失函数.结果表明:改进算法在安全帽和口罩检测数据集的检测精度分别为91.3%和85.5%,与CenterNet算法相比,性能分别提升了2.35%和3.76%,同时具有更快的检测速度.
Lightweight Improved CenterNet Algorithm for Small Target Detection
In order to improve the real-time performance of the traditional target detection algorithm and solve the problems of poor effect and high miss rate in small target detection,an improved Center-Net algorithm was proposed.Firstly,the feature extraction network was changed from ResNet50 to SqueezeNet.The convolution calculation parts in the network were replaced by depthwise separable convolution.Then,the double-threshold improved non-maximum suppression(NMS)algorithm was used to replace the single-threshold NMS algorithm,and the loss function was calculated through DIoU.The experimental results show that the detection accuracy of the improved algorithm in helmet detection and mask detection datasets is 91.3%and 85.5%.Compared with the original CenterNet algorithm,the performance is improved by 2.35%and 3.76%,respectively,and the detection speed is faster.

target detectionSqueezeNetdepthwise separable convolutionCenterNet

张伟丰

展开 >

湖北汽车工业学院 经济管理学院,湖北 十堰 442002

目标检测 SqueezeNet 深度可分离卷积 CenterNet

2024

湖北汽车工业学院学报
湖北汽车工业学院

湖北汽车工业学院学报

影响因子:0.304
ISSN:1008-5483
年,卷(期):2024.38(2)