首页|基于自适应栅格聚类的轻量化车辆检测算法

基于自适应栅格聚类的轻量化车辆检测算法

扫码查看
提出了一种自适应栅格聚类的轻量化车辆检测算法。采用半径滤波和最小二乘法对原始点云进行噪声点去除和地面拟合处理,采用最大最小值栅格化和自适应栅格聚类算法生成若干个聚类目标,使用多层感知机网络对聚类目标进行二分类。在KITTI数据集上进行训练和验证算法实验,结果表明:算法在不同场景下具有环境适应性,与其他3D检测算法相比,车辆识别准确率平均提高了7。95%。
Lightweight Vehicle Detection Algorithm Based on Adaptive Grid Clustering
A lightweight vehicle detection algorithm based on an adaptive grid clustering was proposed.Radius filtering and the least square method were used to remove noise points from the original point cloud and perform ground fitting processing.Maximum and minimum grid transformation and an adap-tive grid clustering algorithm were employed to generate several clustering targets.A multi-layer per-ceptron(MLP)network was utilized to perform binary classification of the clustering targets.Training and algorithm validation experiments were conducted on the KITTI datasets.The experimental results show that the algorithm has environmental adaptability in different scenes.Compared with the other 3D detection algorithms,the proposed algorithm improves the average accuracy of vehicle recognition by 7.95%.

lidarMLPradius filteringleast square methodadaptiwe grid clustering

李珣、张友兵、周奎、曹恺

展开 >

湖北汽车工业学院 汽车动力传动与电子控制湖北省重点实验室,湖北 十堰 442002

东风悦享科技有限公司,湖北 武汉 430000

激光雷达 多层感知机 半径滤波 最小二乘法 自适应栅格聚类

2024

湖北汽车工业学院学报
湖北汽车工业学院

湖北汽车工业学院学报

影响因子:0.304
ISSN:1008-5483
年,卷(期):2024.38(3)