首页|融合Stanley与模糊PID无人车横纵向协同控制

融合Stanley与模糊PID无人车横纵向协同控制

扫码查看
提出了融合Stanley与模糊PID的无人车横纵向协同控制算法。横向控制策略采用自适应Stanley算法,根据道路曲率的变化调整增益参数,解决了增益系数对Stanley算法跟踪精度的影响;纵向控制策略采用模糊PID控制,通过模糊推理规则调整PID参数,使车辆能快速跟踪期望速度。联合CarSim与MATLAB/SimuLink对横纵向协同控制方法进行仿真实验。结果表明:恒定速度下,相比Stanley算法,文中算法的最大位置误差减少了80%,最大航向误差减少了50%;在纵向控制方面,模糊PID控制比PID控制器表现出更稳定地跟踪期望速度。
Lateral and Longitudinal Cooperative Control of Unmanned Vehicles by Integrating Stanley and Fuzzy PID
A lateral and longitudinal cooperative control algorithm of unmanned vehicles by integrating Stanley and fuzzy PID was proposed.The lateral control strategy adopted the adaptive Stanley algo-rithm,which adjusted the gain parameters according to the change of road curvature and solved the in-fluence of the gain coefficient on the tracking accuracy of the Stanley algorithm.The longitudinal con-trol strategy adopted the fuzzy PID control,which adjusted the PID parameters through fuzzy inference rules so that the vehicle could quickly track the desired speed.CarSim and MATLAB/SimuLink were used to carry out simulation experiments on the lateral and longitudinal cooperative control method.The experimental results show that compared with that of the Stanley algorithm,the maximum position error of the proposed algorithm is reduced by 80%at a constant speed,and the maximum heading error is re-duced by 50%.In terms of longitudinal control,the fuzzy PID control can more stably track the desired speed than the PID controller.

trajectory trackinglateral and vertical cooperative controlco-simulation

彭志成、毕栋、朱政泽、周海鹰

展开 >

湖北汽车工业学院 汽车工程师学院,湖北 十堰 442002

东风电子科技股份有限公司,上海 200063

轨迹跟踪 横纵向协同控制 联合仿真

2024

湖北汽车工业学院学报
湖北汽车工业学院

湖北汽车工业学院学报

影响因子:0.304
ISSN:1008-5483
年,卷(期):2024.38(4)