首页|奇异值分解在滚动轴承故障诊断中的应用

奇异值分解在滚动轴承故障诊断中的应用

扫码查看
针对奇异值分解应用于轴承故障诊断中有效重构分量确定困难的问题,提出了基于峭度准则的新方法,实现对滚动轴承的故障诊断。将提出的方法应用于实测滚动轴承内圈、外圈、滚动体的故障信号中,并对重构信号的包络谱进行分析。结果表明,重构信号不仅可以有效提取故障特征频率,同时还将大量的噪声频率成分剔除,为滚动轴承故障诊断提供了参考。
Application of Singular Value Decomposition in Fault Diagnosis of Rolling Bearings
To address the difficulty in determining effective reconstruction components when singular value decomposition(SVD)is used for fault diagnosis of bearings,a new method was proposed based on the kurtosis criterion,so as to realize the fault diagnosis of rolling bearings.The method was applied for fault signals from the inner race,outer race,and rolling elements of the measured rolling bearings,and the envelope spectrum analysis of the reconstructed signals was performed.The experimental results show that the reconstructed signals can not only effectively extract the fault characteristic frequencies but also remove a large number of noise frequency components,providing a reference for fault diagnosis of rolling bearings.

SVDfault diagnosiskurtosis

季景方、董焱章

展开 >

湖北汽车工业学院 汽车工程学院,湖北 十堰 442002

汽车动力传动与电子控制湖北省重点实验室,湖北 十堰 442002

奇异值分解 故障诊断 峭度

2024

湖北汽车工业学院学报
湖北汽车工业学院

湖北汽车工业学院学报

影响因子:0.304
ISSN:1008-5483
年,卷(期):2024.38(4)