首页|基于QPSO-Kriging的浮选产品灰分预测

基于QPSO-Kriging的浮选产品灰分预测

扫码查看
分析了煤泥浮选过程中的关键参数,建立了数学模型,提出了基于量子粒子群优化克里金插值的浮选系统控制方法,设计了自适应的浮选控制系统。实验表明:该系统能根据实时数据调整控制参数,达到最佳的浮选效果;明显提高了煤泥的回收率和分选效率,同时降低了能耗和浮选剂的消耗。
Ash Content Prediction of Floating Products Based on QPSO-Kriging
The key parameters in the flotation process of coal slurry were analyzed,and a mathematical model was established.A flotation system control method based on quantum-behaved particle swarm-optimized(QPSO)Kriging interpolation was proposed,and an adaptive flotation control system was de-signed.The experimental results show that the system can adjust the control parameters according to the real-time data to achieve the best flotation effect.It improves the recovery rate of coal slurry and the sorting efficiency and reduces the energy consumption and the consumption of flotation agents.

coal preparation plantflotationQPSOKriging interpolation

常诚、陈君宝

展开 >

湖北汽车工业学院 机械工程学院,湖北 十堰 442002

选煤厂 浮选 量子粒子群 克里金插值

2024

湖北汽车工业学院学报
湖北汽车工业学院

湖北汽车工业学院学报

影响因子:0.304
ISSN:1008-5483
年,卷(期):2024.38(4)