首页|基于EC-YOLO的道路缺陷检测

基于EC-YOLO的道路缺陷检测

扫码查看
针对道路缺陷检测中识别准确度低、漏检、误检等问题,提出了道路缺陷检测模型EC-YOLO。在主干网络中使用C2f和EMA注意力机制构建全新的模块C2f_EMA,通过重塑通道并将通道维度分组,以保留通道信息。在颈部网络中引入上采样模块CARAFE,通过特征扩张与重组保留更多的特征细节。将EC-YOLO与主流目标检测模型进行对比实验。结果表明,EC-YOLO的平均精度均值较YOLOv8提高3。4%。
Road Defect Detection Based on EC-YOLO
To address issues such as low recognition accuracy,missed detections,and false positives in road defect detection,the road defect detection model EC-YOLO was proposed.A new C2f_EMA mod-ule was constructed in the backbone network by using the C2f and EMA attention mechanisms.Channel information was preserved by reshaping channels and grouping channel dimensions.An upsampling module called CARAFE was introduced in the neck network.More feature details were retained through feature expansion and recombination.An experiment was conducted to compare EC-YOLO with main-stream target detection models.The experimental results show that the average accuracy of EC-YOLO is 3.4%higher than that of YOLOv8.

YOLOv8nroad defect detectionattention mechanismupsampling operator

王杰、翟亚红、徐龙艳、祝岚、赵逸凡、叶子恒

展开 >

湖北汽车工业学院 电气与信息工程学院,湖北 十堰 442002

YOLOv8n 道路缺陷检测 注意力机制 上采样算子

2024

湖北汽车工业学院学报
湖北汽车工业学院

湖北汽车工业学院学报

影响因子:0.304
ISSN:1008-5483
年,卷(期):2024.38(4)