首页|基于CNN-GRU-ATT的城市暴雨积水预测研究

基于CNN-GRU-ATT的城市暴雨积水预测研究

扫码查看
多发频发的极端暴雨事件导致很多城市普遍面临严重内涝问题.能否准确高效地预测城市积水点的水位变化,是城市内涝防治的重要组成部分.为有效提升城市暴雨积水预测的精度和效率,建立了一种基于卷积神经网络(CNN)-门控循环单元(GRU)-注意力机制(ATT)的城市暴雨积水预测模型.首先利用CNN与GRU提取水位数据的局部空间特征和深层时间特征,然后引入ATT加强对降雨序列中关键信息的记忆,从而完成城市积水点的水位预测.利用开封市某积水点的实测水位对模型进行了验证,并与以往的CNN-GRU、ATT-CNN-LSTM以及CNN-LSTM模型进行了对比分析.结果表明,CNN-GRU-ATT模型的损失函数在epoch=20处即达到收敛,损失函数值最终稳定在0.000 2左右,收敛效果较好.此外,与其他3种模型相比,CNN-GRU-ATT模型的预测精度评价指标表现均为最优,且模型仍能保持较高的运算效率.其中均方根误差为1.39%,平均绝对百分比误差为4.32%,决定系数为0.995 4.这表明CNN-GRU-ATT模型能够准确、高效地预测出积水点的水位变化情况,可为暴雨内涝预警和制定防汛排涝方案提供有效的科学依据.
Research on Urban Rainstorm Water Accumulation Prediction Based on CNN-GRU-ATT
The frequency and recurrence of extreme rainfall events has resulted in many cities facing serious flooding prob-lems.The ability to accurately and efficiently predict changes in water levels at urban waterlogging sites is an important component in the prevention and control of urban flooding.In order to effectively improve the accuracy and efficiency of ur-ban storm water prediction,this paper establishes an urban storm water prediction model based on convolutional neural net-work(CNN)-gated recurrent unit(GRU)-attention mechanism(ATT).First,CNN and GRU are used to extract the lo-cal spatial features and deep temporal features of the water level data,and then ATT is introduced to enhance the memory of the key information in the rainfall sequence,and finally the water level prediction of urban water accumulation points is completed.The model was validated by using the measured water level at a waterlogged site in Kaifeng and compared with previous CNN-GRU,ATT-CNN-LSTM and CNN-LSTM models.The results show that the loss function of the model is converged at epoch=20,and the value of the loss function is finally stabilized at 0.000 2,which is a good convergence effect.In addition,compared with the other three models,the CNN-GRU-ATT model has the best performance in terms of prediction accuracy,with the root mean square error of 1.39%,the mean absolute percentage error of 4.32%and the coef-ficient of determination of 0.995 4.The model also has the shortest training and prediction time and the highest operational efficiency,which indicates that the model can accurately and efficiently predict the water level changes at the water accu-mulation points.The model will provide an effective scientific basis for early warning of storm water flooding and the formu-lation of flood control and drainage plans.

urban rainstormwater level predictionconvolutional neural networkgated recurrent unitattention mecha-nism

胡昊、陈军朋、李擎、马鑫、徐鹏、刘明潇

展开 >

黄河水利职业技术学院,河南开封 475004

华北水利水电大学,河南郑州 450046

河南省跨流域区域引调水运行与生态安全工程研究中心,河南开封 475004

中国水利水电科学研究院流域水循环模拟与调控国家重点实验室,北京 100038

展开 >

城市暴雨 积水预测 卷积神经网络 门控循环单元 注意力机制

河南省重大科技专项开封市重点研发专项

23110032010022ZDYF007

2024

华北水利水电大学学报(自然科学版)
华北水利水电大学

华北水利水电大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.558
ISSN:1002-5634
年,卷(期):2024.45(4)
  • 23