首页|基于YOLOX-αSMV的带钢材料表面缺陷检测算法

基于YOLOX-αSMV的带钢材料表面缺陷检测算法

扫码查看
[目的]针对YOLOX算法在钢材表面缺陷检测中特征提取不充分、多目标缺陷检测能力较弱等问题,提出改进损失函数的多维度特征融合带钢材料表面缺陷检测算法.[方法]首先,在Backbone部分应用SPP_SF保留多尺度特征信息,提高分类精度.其次,在Neck部分加入多维度特征融合模块MDFFM,将通道、空间、位置信息融入特征向量中,加强算法的特征提取能力.最后,引入Varifocal Loss和α-CIoU加权正负样本,提高预测框的回归精度.[结果]实验结果表明,YOLOX-αSMV在NEU-DET数据集中的mAP@0.5:0.95达到了47.54%,较YOLOX算法提高了3.43%.[结论]算法在保持检测速度基本不变的情况下,对模糊缺陷和小目标缺陷的识别、定位能力明显提升.
YOLOX-αSMV Algorithm for Surface Defect Detection of Strip Steel Material
[Objective]In order to solve the problems of insufficient feature extraction and weak ability of multi-target defect detection of YOLOX algorithm in steel surface defect detection,a multi-dimensional feature fusion strip material surface defect detection algorithm based on improved loss function is proposed.[Method]First of all,apply SPP_SF to the Backbone part to retain multi-scale feature information and improve classification accu-racy.Secondly,the multi-dimensional feature fusion module MDFFM is added in the Neck part to integrate the channel,space and position information into the feature vector to strengthen the feature ex-traction ability of the algorithm.Finally,the introduction of Varifocal Loss and α-CIoU is weighted with positive and negative samples to improve the regression accuracy of the prediction box.[Result]The experimental results show that YOLOX-αSMV in NEU-DET data set mAP@0.5:0.95 reaches 47.54%,which is 3.43%higher than YOLOX algorithm.[Conclusion]The algorithm significantly improves the recognition and localization of fuzzy defects and small target defects while keeping the detection speed basically unchanged.

YOLOXdefect detectionα-CIoUcoordinate attentionVarifocal LossSoftPool

曹义亲、刘文才、徐露

展开 >

华东交通大学软件学院,江西南昌 330013

江西交通职业技术学院机电工程学院,江西南昌 330013

YOLOX 缺陷检测 α-CIoU 坐标注意力 Varifocal Loss SoftPool

国家自然科学基金江西省科技支撑计划重点项目

6186101620161BBE50081

2024

华东交通大学学报
华东交通大学

华东交通大学学报

CSTPCD
影响因子:0.748
ISSN:1005-0523
年,卷(期):2024.41(2)