首页|混编公交发车间隔及车辆运用计划协同优化

混编公交发车间隔及车辆运用计划协同优化

扫码查看
[目的]为燃油公交和电动公交共同组成的混编公交发车间隔与车辆运用计划协同优化,以发车间隔平滑化程度和综合运营成本最小为优化目标.[方法]考虑发车间隔范围、车辆数目、车辆接续、电动公交续航里程等多个约束,建立优化模型.设计遗传算法对两阶段模型进行求解,提升了求解的效率与准确性.[结果]案例表明:和既有运营方案相比,优化模型在较为均匀的发车间隔下,节约车辆总运营成本可达到13.04%.[结论]能够合理配置公交车辆使用数目,实现电动公交错峰充电,提升车辆利用率.
A Two-Stage Model for Collaborative Optimization of Mixed Bus Departure Intervals and Vehicle Utilization Plans
[Objective]Collaborative optimization of departure intervals and vehicle utilization plans for hybrid buses composed of fuel powered and electric buses,with the goal of minimizing the smoothness of departure in-tervals and overall operating costs.[Method]With multiple constraints being considered,including departure in-terval range,number of vehicles,vehicle connectivity,and electric bus range,an optimization model was estab-lished to improve these aspects.A genetic algorithm was designed to solve the two-stage model,enhancing effi-ciency and accuracy of the solution.[Results]The case study shows that compared with existing operational plans,the optimized model can save the total operating cost of vehicles by up to 13.04%under relatively uni-form departure intervals.[Conclusion]This optimization model could allocate the number of buses used more reasonably with a relatively uniform departure interval,achieved off-peak charging for electric buses and en-hanced vehicle utilization.

mixed bus fleetvehicle utilization planbus schedulinggenetic algorithm

付雨、石俊刚、杨静、邸振、陈星

展开 >

华东交通大学交通运输工程学院,江西南昌 330013

南昌轨道交通集团有限公司,江西南昌 330038

混编公交车队 公交车辆运用计划 公交时刻表 遗传算法

国家自然科学基金项目

71801093

2024

华东交通大学学报
华东交通大学

华东交通大学学报

CSTPCD
影响因子:0.748
ISSN:1005-0523
年,卷(期):2024.41(4)