首页|基于三维正态分布变换改进算法的移动机器人实时定位

基于三维正态分布变换改进算法的移动机器人实时定位

扫码查看
针对点云配准三维正态分布变换(3D-NDT)在未确定初始位姿情况下配准精度较低、配准时间较长,无法满足移动机器人实时定位要求,提出 1种改进的 3D-NDT点云配准融合算法.在原始点云的降采样过程中,使用源点云中的点替代计算得到的重心,降低算法运算量并保留点云的特征信息;通过引入信赖半径动态调节迭代步长,提高降采样后的精度和点云配准速度;通过融合三维激光点云数据与 9轴惯性测量单元(IMU)数据,解决 2组点云数据位姿差异过大无法收敛或进入局部极值的问题.采用实验室自搭建的移动机器人平台对改进的 3D-NDT算法进行仿真实验,验证改进算法实时定位的可靠性和准确度.结果表明:与传统 3D-NDT算法相比,改进 3D-NDT算法在室外和室内环境下的匹配精度分别提升 106%,108%,匹配成功率分别提升 8.29%,6.35%,平均匹配耗时分别降低 51.1%,47.9%,移动机器人实时定位的配准精度得到较大提升,单次配准时间也大幅降低,改进的3D-NDT算法可满足移动机器人实时定位的需求.
Real-time Positioning of Mobile Robots Based on Improved 3D Normal Distributions Transform Algorithm
To address the issues of low registration accuracy and long registration time in 3D normal distributions transform(3D-NDT)point cloud registration when initial poses are not accurately known,which fail to meet the real-time localization requirements of mobile robots,an improved 3D-NDT point cloud registration fusion algorithm was proposed.During the downsampling process of the raw point cloud,points from the source point cloud were used to replace the calculated centroids,thereby reducing computational complexity while preserving the feature information of the point cloud.By introducing a trust radius to dynamically adjust the iteration step size,the accuracy after downsampling and the speed of point cloud registration could be improved.Additionally,by integrating 3D laser point cloud data with 9-axis inertial measurement unit(IMU)data,problems such as excessive pose differences between two sets of point cloud data leading to non-convergence or falling into local minima were resolved.The improved 3D-NDT algorithm was subjected to simulation experiments using a self-built mobile robot platform in the laboratory to verify the reliability and accuracy of the real-time localization of the enhanced algorithm.The results show that compared with the traditional 3D-NDT algorithm,the improved 3D-NDT algorithm achieves a matching accuracy improvement of 106%outdoors and 108%indoors,with success rates increasing by 8.29%and 6.35%,respectively.Average matching times were reduced by 51.1%and 47.9%,respectively.This significant enhancement in registration accuracy and substantial reduction in single-registration time for mobile robot real-time localization indicate that the improved 3D-NDT algorithm can meet the demands of real-time positioning for mobile robots.

normal distribution stransformpoint cloud datapoint cloud registrationinertial measurement unit(IMU)data fusiondynamic trust radiusautonomous localizationmobile robots

赵卫东、吕红兵、刘立磊、周大昌

展开 >

安徽工业大学 电气与信息工程学院,安徽 马鞍山 243032

正态分布变换 点云数据 点云配准 惯性测量单元(IMU) 数据融合 动态信赖半径 自主定位 移动机器人

2025

安徽工业大学学报(自然科学版)
安徽工业大学

安徽工业大学学报(自然科学版)

影响因子:0.428
ISSN:1671-7872
年,卷(期):2025.42(1)