首页|基于对抗样本的负图片对分类网络的影响探究

基于对抗样本的负图片对分类网络的影响探究

扫码查看
将原始的样本图片(正图片)转换为负图片后,物体的关键类别信息可以保留,能被人类正确分类,但一般的神经网络模型对于负图片的识别能力较弱。人工智能领域,研究者更加追求模型在原始图片上的表现,鲜有对于负图片样本的研究工作。为了探索负图片特征对于模型学习的影响,针对MNIST、CIFAR10、ImageNet三种图片数据集,采用特征图的可视化呈现、不同场景下的识别能力比较等手段,对由正样本集,负样本集,正负混合样本集训练的三种模型进行研究。发现正负样本在模型的特征空间中具有一致性,使网络能够同时拟合正负图片。从准确性角度看,负样本的加入调整了网络深层的特征空间,使正负图片对每个类别的置信度输出统一、类内样本的分布更加紧凑。从对抗鲁棒性的角度看,学习到正负图片特征的模型在对抗扰动上也呈现出对称性,此外,经过负样本训练出的模型可以在一定程度上抵抗一般模型的迁移攻击。
On the Influence of Negative Pictures on Classification Network Based on Adversaria Samples
After converting the original sample pictures(positive pictures)to negative images,the retained objects'critical category information can be classified by humans,but the general neural network models are weak to recognize negative images.In artificial intelligence,researchers are more interested in the performance of the models on the original images,and there is little research work on negative image samples.To explore the effect of negative image features on model learning,using the visualization of feature maps and comparison of recognition ability in different scenes,three models trained by positive samples set,negative samples set,and mixed samples set are investigated for three image datasets:MNIST,CIFAR10,and ImageNet.The positive and negative samples were found to be consistent in the feature space of the model,enabling the network to fit both positive and negative images.From the accuracy point of view,the addition of negative samples adjusts the deep feature space of the network,resulting in uniform confidence output of positive and negative images for each class and a more compact distribution of samples within categories.From the perspective of adversarial robustness,models that learn positive and negative picture features show symmetry in adversarial perturbations;moreover,models trained with negative samples can resist transfer attacks of general models to a certain extent.

negative imagesvisualizationfeature spaceadversarial robustnesssymmetrytransfer attack

杜秀芝、许跃

展开 >

滁州职业技术学院 电气工程学院,安徽 滁州 239000

蚌埠学院 机械与车辆工程学院,安徽 蚌埠 233030

负图片 可视化 特征空间 对抗鲁棒性 对称性 迁移攻击

2024

黑河学院学报
黑河学院

黑河学院学报

影响因子:0.169
ISSN:1674-9499
年,卷(期):2024.15(10)