首页|理论驱动与数据驱动相结合的学习者绩效预测研究

理论驱动与数据驱动相结合的学习者绩效预测研究

扫码查看
对学生的学习成绩进行精准预测,可以尽早识别风险学生并采取有针对性的干预措施.文章以某高校修读计算机网络与云计算课程的160名本科生为研究对象,结合理论驱动和数据驱动的方法,运用聚类分析及交叉分析法,研究了学生主观自评和在线学习行为数据对预测学生成绩的作用.研究发现,理论驱动方法识别出了"深度学习"和"浅层学习"2种在线学习模式,且这2种学习模式下的学生在各项学习成绩上存在显著差异;数据驱动方法识别出了4种(积极主动型、任务型、被动型、消极被动型)在线学习模式,且这4类学习模式下的学生在学习行为及各项成绩上均存在显著差异.本研究进一步采用交叉分析法细分出7种学习模式,并发现这7类学生在学习投入、学习策略、学习行为及各项学习成绩上均存在显著差异.
Research on the Learners'Performance Prediction Combining Theory Driven and Data Driven
Accurately predicting students'academic achievement can identify at-risk students as early as possible and implement targeted interventions on them.This paper takes 160 students taking the Computer Network and Cloud Computing Course in a university as research subjects,combines the theory-driven and data-driven methods,uses cluster analysis and cross analysis to study the effects of student subjective self-evaluation and online learning behavior data on predicting students'performance.It was found that the theory-driven method identified two types of online learning,naming"Deep Learning"and"Surface Learning",there was a significant difference between the two learning patterns in academic achievements.The data-driven method identified four types of online learning models(active,task,passive and more passive),and there were significant differences in learning behaviors and achievements among the students of these four types of learning patterns.The cross analysis was used to identify seven types of learning patterns and there were significant differences in learning engagement,learning strategy,learning behavior and learning achievements among the seven types of students.

Online learning patternTheory drivenData driven

马海英、马潇箫

展开 >

华东理工大学商学院,上海 200237

温州大学外国语学院,浙江温州 325035

在线学习模式 理论驱动 数据驱动

2024

化工高等教育
华东理工大学

化工高等教育

影响因子:0.819
ISSN:1000-6168
年,卷(期):2024.41(3)