首页|中国35城房地产业全要素生产率及其影响因素分析

中国35城房地产业全要素生产率及其影响因素分析

扫码查看
在房地产市场区域分化日益显著的背景下,研究不同城市的房地产业生产效率,是了解各城市房地产资源配置状况的基础.本文首先利用DEA-Malmquist指数模型测算中国35个大中城市2006-2020年的房地产业全要素生产率(TFP),然后依据TFP的各项分解值及其变化规律,从技术进步效率、规模效率以及纯技术效率角度探讨其主要影响因素.实证分析结果显示:不同时期、不同城市的房地产业全要素生产率存在显著差异,而人均国内生产总值、人口密度与房地产政策是其主要影响因素,其中人口密度对房地产业TFP还具有显著的"调节效应".这不仅进一步揭示了房地产业TFP变化的原因,还为房地产市场调控"一城一策"的实施提供了理论依据和政策参考.
Against the background of increas-ingly significant regional differentiation of the real estate market,studying the productivity of the real estate industry in different cities is the basis for un-derstanding the real estate resource allocation situa-tion in each city.This article firstly utilizes the DEA-Malmquist index model to measure the total factor productivity(TFP)of the real estate industry in 35 large and medium-sized cities in China from 2006 to 2020,and then discusses the main influencing factors from the perspectives of technological progress efficiency,scale efficiency,and pure technological efficiency based on the decomposition values of TFP and its changing pat-terns.The results of empirical analysis show that there are significant differences in the total factor productivity of real estate industry in different peri-ods and cities,and GDP per capita,population density and real estate policy are the main influen-cing factors,of which population density also has a significant'moderating effect'on the TFP of real estate industry.This not only further reveals the reasons for the change of TFP in real estate indus-try,but also provides theoretical basis and policy reference for the implementation of'one policy,one city'in real estate market regulation.

Real estate industryTotal factor productivityDEA Malmquist index modelPopulation densityModerating effect

孟洁宁、卜伟、王海硕

展开 >

北京交通大学经济管理学院

河南科技大学商学院

房地产业 全要素生产率 DEA-Malmquist指数模型 人口密度 调节效应

国家社会科学基金(2020)

20BJY097

2024

宏观经济研究
国家发展和改革委员会宏观经济研究院

宏观经济研究

CSSCICHSSCD北大核心
影响因子:1.739
ISSN:1008-2069
年,卷(期):2024.(2)
  • 43