首页|基于数据驱动模型加迁移学习的油田注水管网泄漏诊断方法

基于数据驱动模型加迁移学习的油田注水管网泄漏诊断方法

扫码查看
为解决油田注水管网泄漏诊断机器学习方法准确率不高的问题,基于数据驱动模型结合迁移学习的思路,提出一种油田注水管网泄漏诊断方法.研究结果表明:通过Epanet软件可在已知故障数据的基础上对泄漏故障进行模拟以实现数据增强;经过迁移学习的预训练和二次训练后,对数据驱动模型的准确率进行对比,5种模型中CNN卷积神经网络模型为最佳解决方案,其注水管网泄漏诊断准确率可达94.12%.
The Method for Diagnosing Leakage in Water Injection Pipeline Networks Based on Data-driven Model Plus Transfer Learning
Considering low accuracy of the machine learning methods in diagnosing the leaks in oilfield water injection pipelines,having the data-driven model plus transfer learning method based to propose a method for diagnosis of the leakage in water injection pipeline networks was implemented.The results show that,the Epanet software can simulate the leakage fault based on the known fault data to realize data en-hancement.After pre-training and secondary training of the transfer learning,comparing the accuracy of data-driven models indicates that,among the five models,the convolutional neural network(CNN)model is the best solution,and the accuracy of leakage diagnosis of water filling pipe network can reach 94.12%.

water injection pipeline networkleakage diagnosisdata-driven modeltransfer learningCNNdata enhancement

刘书张、张艳、申建非、陈冠男、任永良、张勇、张新成

展开 >

东北石油大学机械科学与工程学院

广元中核职业技术学院

台州学院智能制造学院

大庆油田水务环保公司

展开 >

注水管网 泄漏诊断 数据驱动模型 迁移学习 卷积神经网络 数据增强

2024

化工机械
天华化工机械及自动化研究设计院有限公司

化工机械

CSTPCD
影响因子:0.325
ISSN:0254-6094
年,卷(期):2024.51(6)