首页|基于改进YOLOv5的快速水平文本检测算法

基于改进YOLOv5的快速水平文本检测算法

扫码查看
基于深度学习的文本检测算法具有强大的特征学习能力和泛化能力,但推理速度通常较慢.针对此问题,提出了基于改进YOLOv5的快速水平文本检测算法T-YOLOv5,通过在SPPF(spatial pyramid pooling-fast)模块中嵌入改进的 CAM(channel attention module)提高网络的特征提取能力,并在CIoU(complete IoU)损失中增加形状损失提高损失函数的收敛速度.所提算法在公共数据集ICDAR2013上F值达到86.5,推理速度达112 FPS.实验结果表明,在检测结果和推理速度上,所提算法T-YOLOv5与现有基于深度学习的文本检测算法相比具有一定的竞争力.
A Fast Horizontal Text Detection Method Based on the Improved YOLOv5
The text detection methods based on deep learning has strong feature learning ability and generalization ability,but the inference speed is usually slow.To solve this problem,a fast horizontal text detection method T-YOLOv5 based on improved YOLOv5 is proposed.By em-bedding an improved CAM(channel attention module)in SPPF(spatial pyramid pooling-fast)module,the feature extraction ability of the network is improved,and the shape loss is added to the CIoU(complete IoU)loss to improve the convergence speed of the loss function.The F value of the proposed method reaches 86.5 on the public dataset ICDAR2013,and the inference speed reaches 112 FPS.Experimental results show that the proposed method T-YOLOv5 is competitive with the existing text detection methods based on deep learning in terms of detection results and inference speed.

text detectiondeep learningYOLOv5scene text

孙巧榆、张静、刘珍兵

展开 >

江苏海洋大学电子工程学院,江苏连云港 222005

文本检测 深度学习 YOLOv5 场景文本

江苏海洋大学研究生科研创新项目

DZXS202106

2024

江苏海洋大学学报(自然科学版)
淮海工学院

江苏海洋大学学报(自然科学版)

影响因子:0.433
ISSN:1672-6685
年,卷(期):2024.33(1)
  • 22