首页|基于物候特征的连云港滨海湿地植被提取方法

基于物候特征的连云港滨海湿地植被提取方法

扫码查看
滨海湿地是介于海陆间的特殊生态系统,滨海湿地植被对其生态系统的功能具有重要影响.快速、准确的滨海湿地植被提取方法对滨海湿地的生态保护和管理具有重要意义.滨海湿地植被类型多为草本植被,不同植被类型之间影像的光谱特征和空间特征相似,可分离度小,导致植被遥感分类难度较大,而融合植被物候特征成为提高分类精度的重要手段.以连云港滨海湿地为研究区,利用PIE-Engine遥感云计算平台,获取 2022 年 72 景 Sentinel-2 影像构建 NDVI 时间序列模型,运用傅里叶函数(Fourier)拟合植被物候特征曲线,分析植被物候特征,并融合物候特征进行植被分类.结果显示:融合物候特征后,植被分类总体精度为 83.83%,Kappa系数为 0.76,相较于单时相影像方法,分类精度提高了 16.6 百分点,Kappa 系数提高了 0.23.因此,利用植被物候特征能有效地提高分类精度.
Study on Vegetation Extraction Method of Lianyungang Coastal Wetland Based on Phenological Characteristics
Coastal wetland is a special ecosystem between land and sea.The vegetation of coastal wetland has an important influence on the function of its ecosystem.It is of great significance to study the rapid and accurate extraction method of coastal wetland vegetation for the ecological protection and management of coastal wetland.The vegetation types of coastal wetlands are mostly herbaceous vegetation.The spectral characteristics and spatial characteristics of images between different vegetation types are similar,and the separability is small,which leads to the difficulty of vegetation remote sensing classification.Fusion of vegetation phenological character-istics has become an important means to improve classification accuracy.In this study,the coast-al wetland of Lianyungang was taken as the research area,and the PIE-Engine remote sensing cloud computing platform was used to obtain 72 scenes of Sentinel-2 images in 2022 to construct NDVI time series model.The Fourier function was used to fit the vegetation phenological charac-teristic curve,analyze the vegetation phenological characteristics,and integrate the phenological characteristics for vegetation classification.The results show that the overall accuracy of vegeta-tion classification is 83.83%and the Kappa coefficient is 0.76 after the fusion of phenological fea-tures.Compared with the single-phase image method,the classification accuracy is increased by 16.6 percentage points and the Kappa coefficient is increased by 0.23.Therefore the use of vege-tation phenological features can effectively improve the classification accuracy.

coastal wetland vegetationphenological characteristicsSentinel-2 imagePIE-En-gine platformtime series

黄唯澄、高祥伟、陶洋、王圳、高亚军、李子威、鞠海建

展开 >

江苏海洋大学 海洋技术与测绘学院,江苏 连云港 222005

连云港市林业技术指导站,江苏 连云港 222002

南通市江海测绘院有限公司,江苏 南通 226000

滨海湿地植被 物候特征 Sentinel-2影像 PIE-Engine平台 时间序列

自然资源部滨海盐沼湿地生态与资源重点实验室开放基金项目连云港市科技局项目

KLCSMERMNR2021102SF2240

2024

江苏海洋大学学报(自然科学版)
淮海工学院

江苏海洋大学学报(自然科学版)

影响因子:0.433
ISSN:1672-6685
年,卷(期):2024.33(3)
  • 11