首页|基于多路特征的改进生成对抗网络水下图像增强算法

基于多路特征的改进生成对抗网络水下图像增强算法

扫码查看
针对水下图像颜色偏差、细节模糊以及对比度低等问题,提出多路特征增强生成对抗网络进行水下图像增强算法.首先,为实现对水下图像的色彩平衡,通过构建蓝绿通道与红色通道之间的衰减矩阵,设计红色通道补偿算法.其次,分别搭建生成网络和判别网络.为获得不同层次特征信息,生成网络由不同深度的特征提取网络组成,并搭建特征增强模块,并行增强多路特征,提高特征的质量.同时,为提高网络细节增强能力,搭建多尺度判别网络,对生成图像进行判别.最后,构建多个损失函数优化网络参数,提高网络鲁棒性.实验结果表明,增强图像相较原始图像色彩更加丰富,对比度较高.与现有的算法相比,该方法能够有效恢复水下图像的真实色彩和纹理细节,显著提高水下图像质量.
Improved Generative Adversarial Network Underwater Image Enhancement Algorithm Based on Multi-channel Features
To address issues such as color deviation,blurry details,and contrast in underwater images,a multi-channel feature enhancement generative adversarial network is proposed for un-derwater image enhancement algorithms.Firstly,to achieve color balance in underwater images,a red channel compensation algorithm is designed by constructing an attenuation matrix between the blue-green channel and the red channel.Secondly,a generative network and a discriminative network is built separately.To obtain feature information at different levels,the generative net-work is composed of feature extraction networks of different depths,and a feature enhancement module is built to enhance multiple features in parallel and improve the quality of the features.At the same time,in order to improve the network's ability to enhance details,a multi-scale discriminative network is built to discriminate the generated images.Finally,multiple loss functions are constructed to optimize network parameters and improve network robustness.The experimental results show that the enhanced image has richer colors and higher contrast compared to the original image.Compared with ex-isting algorithms,this method can effectively restore the true color and texture details of underwater im-ages,significantly improving the quality of underwater images.

underwater image enhancementgenerative adversarial networkattenuation matrixfeature enhancement

赵雪峰、陈荣军、王宇翔、仲兆满

展开 >

江苏海洋大学 计算机工程学院,江苏 连云港 222005

水下图像增强 生成对抗网络 衰减矩阵 特征增强

国家自然科学基金资助项目江苏省"青蓝工程"优秀教学团队项目

721740792022-29

2024

江苏海洋大学学报(自然科学版)
淮海工学院

江苏海洋大学学报(自然科学版)

影响因子:0.433
ISSN:1672-6685
年,卷(期):2024.33(3)
  • 1