首页|公共事件下强弱不良模因识别方法

公共事件下强弱不良模因识别方法

扫码查看
针对目前围绕不良模因研究较少的问题,构建公共事件下不良模因识别模型.以2020年"7·5杭州女子失踪案"这一公共事件社交媒体数据为例,揭示不良模因的内涵,根据不良模因的类型和特性,提出isMeme特征,构建识别模型,对模型进行训练和评估,找出最优识别模型.实验结果表明,isMeme特征能够有效实现不良模因的识别.识别模型中,SVM模型表现最好,准确率达到95%.该研究并未考虑不良模因出现早期的识别问题,后期可进一步分析其早期特征,在数据量更少的情况下实现有效识别.
Method for Identifying Strong and Weak Bad Memes in Public Events
To address the current lack of research on bad memes,a model for identifying bad memes in public events is constructed.Taking the social media data of the"July 5th Hangzhou Women's Disappearance Case"in 2020 as an example,this study reveals the connotation of bad memes.Based on the types and characteristics of bad memes,isMeme features are proposed,and a recognition model is constructed.The model is trained and evaluated to find the optimal recog-nition model.The experimental results indicate that isMeme features can effectively identify bad memes.Among the recognition models,the SVM model performs the best with an accuracy of 95%.This research does not consider the early identification of bad memes,and further research can analyze their early features to achieve effective identification with less data.

public eventsbad memesisMeme featurerecognition model

仲兆满、杜家云

展开 >

江苏海洋大学 计算机工程学院,江苏 连云港 222005

江苏省海洋资源开发研究院,江苏 连云港 222005

公共事件 不良模因 isMeme特征 识别模型

2024

江苏海洋大学学报(自然科学版)
淮海工学院

江苏海洋大学学报(自然科学版)

影响因子:0.433
ISSN:1672-6685
年,卷(期):2024.33(4)