首页|1989-2022 年生态环境中人工智能应用的研究综述——基于Citespace的知识图谱分析

1989-2022 年生态环境中人工智能应用的研究综述——基于Citespace的知识图谱分析

扫码查看
人工智能是研究用计算机来模拟人的某些思维过程和智能行为的学科,近年来在生态环境业务领域的应用价值逐渐凸显。基于 1989-2022年间 CNKI收录的 6 732篇中文文献和 WOS核心合集中 5 012篇英文文献,使用Citespace可视化分析软件,采用传统文献梳理与计量方法,对生态环境中人工智能的知识基础、前沿热点、发展趋势进行梳理,总结了国内外发展脉络、研究前沿、路径演化和最新进展。结果表明:国外在环境风险评估方面研究较多,关注空气污染、水质量等与人体健康密切相关的层面;国内对环境监管的研究居于前列,研究内容多是人工智能在城市街区空气质量、交通噪声、水质、土地覆盖等方面的应用。国内研究方法涵盖水质预测模型、大气污染物扩散模拟、土壤污染算法预测等应用方法,迁移学习、深度学习、机器学习、强化学习等理论方法,国外重点关注深度学习、机器学习、人工神经网络等理论方法的应用。国外近 6年一贯延续用机器学习研究水与空气质量这两类对象,国内近 3年对机器学习、深度学习等研究方法的关注热度逐渐凸显。
Artificial intelligence applications in ecological environments from 1989 to 2022——Knowledge graph analysis based on Citespace
Artificial intelligence(AI)is a discipline that focuses on using computers to simulate certain human thoughts and intelligent behaviors.In recent years,its application value in the ecological environment business has gradually become evident.Based on a review of 6 732 Chinese documents collected by CNKI and 5 012 English-language documents from the WOS core collection between 1989 and 2022,this study employed Citespace analysis software and traditional literature review methods to examine the knowledge foundation,frontier hotspots,and development trends of AI in the ecological environment domain.The domestic and international development trends,research frontiers,path evolution,and latest progress were summarized.The results showed that foreign research had focused more on environmental risk assessment,closely related to human health,such as air pollution and water quality.Domestically,research on environmental rule has taken the lead,with a focus on the application of AI in urban air quality,traffic noise,water quality,and land cover.The research methods employed domestically include water quality prediction models,atmospheric pollutant dispersion simulations,and soil pollution algorithm predictions,while internationally,emphasis has been placed on the application of deep learning,machine learning,and artificial neural networks.In the past 6 years,foreign research has consistently used machine learning to study water and air quality,while domestic attention to research methods such as machine learning and deep learning has gradually increased in the past 3 years.

ecological environmentartificial intelligenceCitespaceknowledge graphvisual analysis

黄明祥、张健钦、杨毅、赵世新、魏斌、李顺、吴海东、程歆玥、李星辰、李心治、姜会忠

展开 >

生态环境部信息中心,北京 100029

北京建筑大学测绘与城市空间信息学院,北京 106216

生态环境 人工智能 Citespace 知识图谱 可视化分析

国家重点研发计划

2019YFC1804903

2024

环境保护科学
沈阳环境科学研究院

环境保护科学

CSTPCD
影响因子:0.469
ISSN:1004-6216
年,卷(期):2024.50(2)
  • 31