首页|数据缺陷条件下支持污水处理厂智能管理的数据增强方法

数据缺陷条件下支持污水处理厂智能管理的数据增强方法

扫码查看
污水处理厂的智能化管理需要高质量、丰富的数据支持.然而,在当前污水处理厂的运维管理电,过度曝气、过量投药及监测问题等导致水厂运维数据的数量和质量存在缺陷,基于此类缺陷数据支持的各种数据驱动模型性能不高.如何提高数据质量和数量对于各类人工智能模型的研究和应用非常关键.提出了一种基于生成对抗网络的污水厂数据增强方法(WP-GAN),以应对数据缺陷问题,并采用一种经典的污水处理厂人工神经网络模型(W-ANN)对所提出的方法进行验证.研究采用的数据集来自某大型城市污水处理厂的厌氧-缺氧-好氧(A2O)工艺,通过数据增强处理将实测数据扩增5倍,以增强前后的数据样本训练W-ANN模型后,模型性能得到显著提升:拟合度从20%提高到65%,最大模拟精度从67.85%提高到75.55%.该方法是一种应对数据缺陷的通用数据增强方法,可为污水厂智能管理的各种数据驱动模型提供更好的数据支持.
A DATA ENHANCEMENT METHOD FOR SUPPORTING INTELLIGENT MANAGEMENT OF WWTPs UNDER DATA DEFICIENCY CONDITIONS
The intelligent management of wastewater treatment plants(WWTPs)requires high-quality and rich data support.However,in the current management mode of WWTPs,issues such as excessive aeration,excessive dosing,and monitoring have led to deficiencies in the quantity and quality of operation and maintenance data.The performance of various data-driven models supported by such defective data is not sufficient.How to improve the quality and quantity of data is crucial for the research and application of various artificial intelligence models.This study proposed a wastewater treatment data enhancement method based on generative adversarial networks(WP-GAN)to address the data defects,and validated the proposed method using a classic wastewater treatment artificial neural network model(W-ANN).The dataset used in the study was from a large urban WWTP with an anaerobic-anoxic-aerobic(A20)process.The measured data was amplified 5-fold through data enhancement treatment,and the W-ANN model was trained with pre-and post-enhancement data samples.It was found that the performance of the W-ANN model was significantly improved:the fitting degree increased from 20%to 65%,and the maximum simulation accuracy increased from 67.85%to 75.55%.The method proposed in this study is a universal data enhancement method to address data deficiencies,which can provide better data support for various data-driven models for the intelligent management of WWTPs.

data enhancementwastewater treatmentgenerative adversarial networksintelligent managementdata-driven models

王建辉、廖万山、李慧敏、冯东、郭智威、Mohamed S.Mahmoud、张冰、高旭、申渝、陈猷鹏

展开 >

重庆工商大学智能制造服务国际科技合作基地,重庆 400067

重庆南向泰斯环保技术研究院有限公司,重庆 400069

重庆中法环保研发中心有限公司,重庆 400010

埃及住房和建筑国家研究中心卫生与环境工程研究所,埃及开罗1770

重庆大学环境与生态学院,重庆 400045

展开 >

数据增强 污水处理 生成对抗网络 智能管理 数据驱动模型

国家自然科学基金项目重庆水务环境控股集团有限公司科技创新项目重庆市教委科研项目重庆工商大学科研项目

523000312022-15CXQT190231853061

2024

环境工程
中冶建筑研究总院有限公司,中国环境科学学会环境工程分会

环境工程

CSTPCD
影响因子:0.958
ISSN:1000-8942
年,卷(期):2024.42(6)