首页|消毒副产物预测模型的研究进展:经验模型

消毒副产物预测模型的研究进展:经验模型

扫码查看
消毒副产物(DBPs)是饮用水消毒过程中的反应产物,严重威胁人体健康,因此建立相关模型、预测其浓度、实现精准控制显得尤为重要.综述了 DBPs预测经验模型的研究进展,简要回顾了当前常见的消毒手段、DBPs种类以及对应的相关规范标准,并分别探讨了基于回归和基于机器学习的DBPs模型原理,对采取这2种方式构建的模型预测效果进行总结和评价.其中,重点分析了 3种DBPs预测模型的机器学习算法原理,即随机森林算法、支持向量机和人工神经网络.提出了当前DBPs预测模型存在的问题,并展望了其未来发展方向,旨在推动构建精准度更高、适用性更强的DBPs预测模型.
A REVIEW OF RESEARCH PROGRESS OF PREDICTION MODELS FOR DISINFECTION BY-PRODUCTS:EMPIRICAL MODELS
Disinfection by-products(DBPs)are the reaction products during the disinfection process of drinking water,which are a serious threat to human health.Therefore,it is crucial to establish relevant models to predict their concentrations and achieve accurate control.This paper reviews the research progress of empirical models for DBPs prediction,briefly reviews the current common disinfection means,types of DBPs,and the corresponding relevant norms and standards,and explores the principles of DBP models based on regression and machine learning,respectively.The prediction effects of models constructed by taking these two approaches are summarized and evaluated.Among them,the principles of machine learning algorithms for three DBPs prediction models,namely,random forest algorithm,support vector machine,and artificial neural network,are focused on and analyzed.This paper puts forward the problems of the current DBPs disinfection by-products prediction model.It looks forward to its future development direction,aiming to promote the building of the prediction model with higher accuracy and applicability.

disinfection by-productspredictive modelsregression methodsmachine learningmodel evaluation

褚洋洋、李卉、朱延平、韩小蒙、舒诗湖

展开 >

东华大学 环境科学与工程学院,上海 201620

消毒副产物 预测模型 回归方法 机器学习 模型评估

水体污染控制与治理国家科技重大专项

2017ZX07207-005

2024

环境工程
中冶建筑研究总院有限公司,中国环境科学学会环境工程分会

环境工程

CSTPCD
影响因子:0.958
ISSN:1000-8942
年,卷(期):2024.42(7)