首页|基于CEEMDAN-SE-BiLSTM模型的西安市PM2.5浓度预测

基于CEEMDAN-SE-BiLSTM模型的西安市PM2.5浓度预测

扫码查看
大气颗粒物浓度与环境污染息息相关,准确预测PM2.5浓度对生态环境保护至关重要.选取西安市2020年1月1日—2021年12月31日的PM2.5浓度数据和气象数据,针对PM2.5序列非平稳非线性的特点,通过自适应噪声完备集合经验模态分解(CEEMDAN)将PM2.5浓度序列分解为多个本征模态分量,减少数据噪声,以样本熵(SE)作为指标对分量进行k均值聚类(k-means聚类),去除冗余信息,然后将重构分量输入到双向长短期记忆神经网络模型(BiLSTM模型)中,辅以气象数据和独热编码处理后的时间数据增强输入特征,输出各分量的预测结果,叠加后得到最终的PM2.5浓度预测结果.结果表明:与常见的XGBoost模型、长短期记忆神经网络(LSTM)模型、BiLSTM模型和其他组合模型相比,CEEMDAN-SE-BiLSTM模型在未来4个时刻(T+3、T+6、T+12、T+24)的预测性能更优.其均方根误差(RMSE)、平均绝对误差(MAE)、平均绝对百分比误差(MAPE)均有降低,T+3时刻的决定系数(R2)达到0.993,预测精度大幅提升.此外,在全国范围内选取5个城市(郑州、成都、北京、上海和广州)验证该模型的泛化性,结果显示,5个城市的预测误差均较小.CEEMDAN-SE-BiLSTM模型对PM2.5浓度序列的短期预测具有较好的普适性、准确性.
PREDICTION OF PM2.5 CONCENTRATION IN XI'AN BASED ON CEEMDAN-SE-BiLSTM MODEL
Atmospheric particulate matter concentration is closely related to environmental pollution,and accurate prediction of PM2.5 concentration is crucial for ecological environmental protection.Based on PM2 5 concentration and meteorological data from January 1,2020,to December 31,2021,in Xi'an,the PM2.5 concentration series was decomposed into multiple eigenmodal components by complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN)for the non-stationary and non-linear characteristics,and the sample entropy(SE)was used as an indicator to perform k-means clustering to reduce data noise.Then the reconstructed components were inputted into a bi-directional long short-term memory model(BiLSTM model),supplemented with the enhanced information of meteorological data and temporal data after unique thermal coding processing to output the prediction results of each component,finally superimposed to obtain the final PM2 5 concentration prediction results.The results showed that the CEEMDAN-SE-BiLSTM model had better prediction performance at four future moments(T+3,T+6,T+12,and T+24)compared with the XGBoost model,long short-term memory neural network(LSTM)model,BiLSTM model,and other combined models.The CEEMDAN-SE-BiLSTM model had better prediction performance,in terms of root mean square error(RMSE),mean absolute error(MAE),and mean absolute percentage error(MAPE)were all decreased and at the moment of T+3,the determination coefficient(R2)was 0.993.The prediction accuracy was greatly improved.In addition,five cities(Zhengzhou,Chengdu,Beijing,Shanghai,and Guangzhou)were randomly selected nationwide to verify the model's generalization,and the results showed that the prediction errors in the five cities were all small.The CEEMDAN-SE-BiLSTM model can be extended to other regions and cities and is capable of accurate short-term prediction.

BiLSTMCEEMDANPM2.5 predictionsample entropytime series

谢琪、夏飞、袁博

展开 >

上海电力大学自动化工程学院,上海 200090

南瑞集团有限公司(国网电力科学研究院有限公司),南京 211106

双向长短期记忆神经网络(BiLSTM) 自适应噪声完备集合经验模态分解(CEEMDAN) PM2.5浓度预测 样本熵(SE) 时间序列

上海市科委创新项目

19DZ1206800

2024

环境工程
中冶建筑研究总院有限公司,中国环境科学学会环境工程分会

环境工程

CSTPCD
影响因子:0.958
ISSN:1000-8942
年,卷(期):2024.42(8)