首页|基于时序知识推理的时序知识图谱补全方法

基于时序知识推理的时序知识图谱补全方法

扫码查看
基于知识推理的知识图谱补全技术研究在静态图谱上已经获得了较为明显的效果,但其在处理与时间相关的事件上仍存在着不足,而基于时序推理的知识图谱补全方法更加贴合真实事件,有较高的研究价值.然而,现有的时序知识图谱补全技术在处理节点信息和全局信息上存在局限性问题.因此,提出了一种基于注意力聚合邻居信息并使用双向LSTM处理时间信息的改进方法.首先,通过推理预测的方式补全时序知识图谱中缺失的信息,并在推理过程中生成推理路径图来解决由神经网络所带来的不可解释性问题;然后,使用4 种不同时间跨度的公开数据集进行了实验并与主流方法进行了比较.实验结果表明:所提方法在Rmr、h@1和h@10 这 3 个指标上是优于现有方法的.
Temporal knowledge graph completion method based on temporal knowledge reasoning
The research on knowledge graph completion based on knowledge reasoning has obtained obvious effect on static graph,but it has shortcomings in dealing with time-related events.Knowledge graph completion based on temporal reasoning is more suitable for real events and has higher research value.However,most of the existing temporal knowledge graph completion techniques have limita-tions in processing node information and global information.Therefore,an improved method was pro-posed,which aggregated neighbor information by attention and obtains global time information by using bidirectional LSTM,and completed the missing information in temporal knowledge graph by reasoning prediction.At the same time,the reasoning path graph was generated in the reasoning process to solve the problem of unexplainability caused by neural network.The experimental results,which used 4 different time spans of public data sets and compared with mainstream methods,show that the proposed method is superior to the existing methods in terms of Rmr,h@1 andh@10 indicators.

temporal knowledge graphknowledge graph completionknowledge reasoningattention mechanismgraph neural network

崔良中、任浩源、吕晓

展开 >

海军工程大学 电子工程学院,武汉 430033

时序知识图谱 知识图谱补全 知识推理 注意力机制 图神经网络

湖北省自然科学基金资助项目

2019CFB627

2024

海军工程大学学报
海军工程大学

海军工程大学学报

CSTPCD北大核心
影响因子:0.34
ISSN:1009-3486
年,卷(期):2024.36(2)
  • 17