首页|顾及加权Sobel滤波特征增强的空天影像稳健匹配方法

顾及加权Sobel滤波特征增强的空天影像稳健匹配方法

扫码查看
针对航空航天影像之间存在显著的跨视角差异、尺度和尺寸差异、旋转和位移差异以及非线性辐射差异,导致空天影像匹配难以高效稳定的问题,设计了 一种顾及加权Sobel滤波特征增强的空天影像稳健匹配方法,从而完成卫星影像和无人机影像之间的稳健匹配.首先,对空天影像进行相位一致性计算,得到相位最大最小力矩图,并对力矩图进行特征点检测;然后,使用顾及加权Sobel滤波特征增强的加权梯度特征描述子对特征点进行描述;最后,利用欧氏距离作为匹配测度进行同名点识别,将多组存在不同程度的视角差异、旋转差异、尺度差异和非线性辐射差异的空天影像作为数据源,分别与基于改进SURF检测器的局部高分辨率图像配准、定向自相似直方图匹配、位置尺度定向不变特征变换和尺度不变特征变换等算法进行了对比实验.结果表明:所提方法在综合匹配性能上明显优于其他方法,能够实现航空航天影像的稳健匹配.
Robust and stable matching method for aerospace images considering weighted Sobel filter feature enhancement
In view of the significant cross-viewpoint differences,scale and size differences,rotation and displacement differences,and nonlinear radiation differences between aerospace images that lead to the stable and efficient problem of matching aerospace images,a robust and stable matching method was designed for aerospace images considering weighted Sobel filter feature enhancement,which can achieve stable matching between satellite images and unmanned aerial vehicle images.Firstly,phase consistency calculation was performed on the aerospace images to obtain the maximum and minimum phase torque map,and feature point detection was performed on the torque map.Then,the feature points were described using a weighted gradient feature descriptor that takes into account weighted Sobel filtering feature enhancement.Finally,using Euclidean distance as a matching measure for identifying Homologous points,whereby multiple sets of aerospace images with varying degrees of perspective differences,rotation differences,scale differences,and nonlinear radiation differences were taken as data sources,and comparative experiments with algorithms were conducted such as the improved SURF detector and localization based on oriented least square matching,histogram of orien-ted self-similarity,position scale orientation-SIFT,and scale invariant feature transform.The experi-mental results show that,in the field of aerospace images matching,the proposed method significantly outperforms the other methods in terms of comprehensive matching performance.So,that method can thus achieve robust matching of aerial images.

aerospace imaginganisotropic moment diagramweighted Sobel filtering feature en-hancementweighted directional feature descriptioncharacteristic matching

申森、张晓晖、刘行、江林烨、杨威

展开 >

海军工程大学兵器工程学院,武汉 430033

航天规划设计集团有限公司第七总部,北京 100071

武昌首义学院信息科学与工程学院,武汉 430064

航空航天影像 各向异性力矩图 加权Sobel滤波特征增强 加权定向特征描述 特征匹配

湖北省自然科学基金资助项目

2022CFB501

2024

海军工程大学学报
海军工程大学

海军工程大学学报

CSTPCD北大核心
影响因子:0.34
ISSN:1009-3486
年,卷(期):2024.36(5)