首页|基于滤波平滑的迭代无迹卡尔曼滤波算法

基于滤波平滑的迭代无迹卡尔曼滤波算法

扫码查看
针对强非线性动态函数情况下无迹卡尔曼滤波(unscented Kalman filter,UKF)先验估计精度严重降低的问题,提出了一种基于滤波平滑的迭代UKF算法来改进UKF的时间更新.通过研究固定间隔无迹Rauch-Tung-Striebel平滑器的部分反向平滑操作,可以获取滤波动态模型更精确的输入,进而得到更精确的状态先验估计,而将该迭代UKF算法与用于处理量测更新的传统迭代UKF算法结合,可进一步改进滤波解.利用单变量非平稳增长模型对所提迭代UKF算法的有效性进行了验证,结果表明:对于非线性动态模型,提出的迭代UKF算法的性能有明显提升,且将该算法与传统迭代UKF算法相结合,可进一步提高UKF的性能.
Iterated unscented Kalman filter algorithm based on filter smoothing
Aiming at the problem that the prior estimation accuracy of unscented Kalman filter(UKF)is seriously reduced in the case of strong nonlinear dynamic functions,an iterative UKF algorithm based on filter smoothing was proposed to improve the time update of UKF.By studying the partial reverse smoothing operation of the unscented Rauch-Tung-Striebel smoother,more accurate input of the filter dynamic model and more accurate state prior estimation were obtained.The proposed itera-tive UKF algorithm could be combined with the traditional iterative UKF algorithm for processing measurement updates to further improve the filter solution.The effectiveness of the proposed iterative UKF algorithm was verified by using a single variable non-stationary growth model.The results show that the performance of the proposed iterative UKF algorithm is significantly improved for nonlinear dynamic models.Moreover,combining the proposed iterative UKF algorithm with the traditional ite-rative UKF algorithm can further improve the performance of UKF.

filter smoothingunscented Kalman filtertime updateiteration

左云龙、张晓锋、朱天高、张阳

展开 >

海军工程大学电气工程学院,武汉 430033

中国海警局东海分局,上海 200333

滤波平滑 无迹卡尔曼滤波 时间更新 迭代

2024

海军工程大学学报
海军工程大学

海军工程大学学报

CSTPCD北大核心
影响因子:0.34
ISSN:1009-3486
年,卷(期):2024.36(5)