首页|基于多智能体强化学习的对抗博弈技术综述

基于多智能体强化学习的对抗博弈技术综述

扫码查看
多智能体对抗系统是多方博弈的复杂系统.近年来,很多研究聚焦于用强化学习解决多智能体对抗博弈问题.文章从多智能体强化学习的角度对智能博弈对抗的算法进行综述.首先,简要介绍了对多智能体强化学习及博弈论;然后,提出多智能体强化学习的4项关键技术难点,并提出相关解决方法;最后,归纳多智能体强化学习的前沿研究方向,总结了研究热点与存在的挑战.综述为后续的研究打下基础,为使用多智能体强化学习解决博弈对抗问题提供思路.
Review of Adversarial Game Techniques Based on Multi-Agent Reinforcement Learning
Multi-agent adversarial systems are complex multi-perty game systems,and in recent years,many studies have focused on using reinforcement learning to solve multi-agent adversarial game problems.This article reviews intelligent game adversarial algorithms from the perspective of multi-agent reinforcement learning.First,a brief introduction to multi-agent reinforcement learning and game theory is given;then,four key technical difficulties of multi-agent reinforce-ment learning are proposed,and related solutions are sorted out;finally,the frontier research direction of multi-agent rein-forcement learning is summarized,and three research hotspots and challenges are concluded.This review lays a founda-tion for the subsequent research and provides ideas for solving the game antagonism problem by using multi-agent rein-forcement learning.

multi-agentreinforcement learninggame theory

张耐民、蔡秉辰、于浛、刘海阔

展开 >

北京宇航系统工程研究所,北京 100076

北京理工大学自动化学院,北京 100081

多智能体 强化学习 博弈论

国家自然科学基金

92371207

2024

海军航空大学学报
海军航空工程学院科研部

海军航空大学学报

CSTPCD
影响因子:0.279
ISSN:
年,卷(期):2024.39(4)
  • 6